DOI QR코드

DOI QR Code

Validation of OMI HCHO with EOF and SVD over Tropical Africa

EOF와 SVD을 이용한 아프리카 지역에서 관측된 OMI HCHO 자료의 검증

  • Kim, J.H. (Department of Atmospheric Science, Pusan National University) ;
  • Baek, K.H. (Department of Atmospheric Science, Pusan National University) ;
  • Kim, S.M. (Global Environment System Research Lab., National Institute of Meteorological Research)
  • Received : 2014.03.13
  • Accepted : 2014.06.12
  • Published : 2014.08.31

Abstract

We have found an error in the operational OMI HCHO columns, and corrected it by applying a background parameterization derived on a 4th order polynomial fit to the time series of monthly average OMI HCHO data. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. A new scientific approach, statistical analyses with EOF and SVD, was adapted to reanalyze the consistency of the corrected OMI HCHO with other satellite measurements of HCHO, CO, $NO_2$, and fire counts over Africa. The EOF and SVD analyses with MOPITT CO, OMI $NO_2$, SCIAMAHCY, and OMI HCHO show the overall spatial and temporal pattern consistent with those of biomass burning over these regions. However, some discrepancies were observed from OMI HCHO over northern equatorial Africa during the northern biomass burning seasons: The maximum HCHO was found further downwind from where maximum fire counts occur and the minimum was found in January when biomass burning is strongest. The statistical analysis revealed that the influence of biogenic activity on HCHO wasn't strong enough to cause the discrepancies, but it is caused by the error in OMI HCHO from using the wrong Air Mass Factor (AMF) associated with biomass burning aerosol. If the error is properly taken into consideration, the biomass burning is the strongest source of HCHO seasonality over the regions. This study suggested that the statistical tools are a very efficient method for evaluating satellite data.

본 연구는 현재 NASA에서 제공되는 operational OMI HCHO 관측 값에서 에러를 발견하여, 월평균 HCHO 자료의 시계열에 4 차 다항식을 피팅함으로써 구한 배경 모수화(parameterization)값을 이용하여 OMI HCHO 자료의 보정을 수행하였다. 보정후의 OMI HCHO는 동태평양과 서태평양 지역에서 -1.48%, 0.65%/year 경향성을 보였으며 이 수치는 GOME(-0.99%, 1.1%/year)과 SCAIMACHY(-0.92%, 0.03%/year)의 경향성과 유사한 결과이며 적절하게 비정상적인 배경 HCHO 농도의 증가가 제거되었음을 나타낸다. 이 자료의 검증과 분석은 EOF와 SVD 통계적 분석 방법을 사용하여 아프리카 지역에서 다양한 위성 관측 값과의 (HCHO, CO, $NO_2$ 그리고 firecount) 시공간 변동성의 일치성을 비교 분석함으로써 수행되었다. 아프리카에서 MOPITT CO, OMI $NO_2$, SCIAMAHCY 그리고 OMI HCHO의 EOF와 SVD 분석 결과는 생태계화재(biomass burning)의 시공간 변동성 분포와 매우 높은 일치성을 보여준다. 그러나 OMI HCHO 관측 값은 화재가 가장 강하게 발생하는 지역의 풍하측에서 최대 값이 보이며, 화재 발생이 가장 높은 1월에 다소 낮은 HCHO 값이 보이는 등 시공간적으로 생태계 화제 분포와 차이를 보인다. 이것의 원인으로 우리는 이 지역의 열대우림의 식물활동(biogenic activity)영향으로는 설명할 수 없고, biomass burning 에어로졸에 의한 잘못된 AMF 계산이 OMI HCHO 산출에 사용됨으로써 발생한 오차라는 것을 밝혔다. AMF와 관련된 오차가 적절하게 보정된다면, 아프리카 지역의 HCHO 시공간 변동성은 생태계 화제의 변동성을 따를 것이라 예상된다. 따라서 본 연구는 통계적 기법이 위성 자료를 평가하는데 매우 효율적인 방법임을 제안한다.

Keywords

References

  1. Abbot, D.S., P.I. Palmer, R.V. Martin, K.V. Chance, D.J. Jacob, and A. Guenther, 2003. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space, Geophys. Res. Lett.,30(17): 1886. https://doi.org/10.1029/2003GL017336
  2. Atkinson, R. 2000. Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34(12): 2063-2101. https://doi.org/10.1016/S1352-2310(99)00460-4
  3. Baek, K.H., J. Kim, R. Park, K. Chance, and T. Kurosu, 2014. Validation of OMI HCHO data and its analysis over Asia. Science of Total Environment, 490: 93:105
  4. Barkley, M.P., P.I. Palmer, I. De Smedt, T. Karl, A. Guenther, and M. Van Roozendael, 2009. Regulated large-scale annual shutdown of Amazonian isoprene emissions, Geophys. Res. Lett., 36(4): L04803. https://doi.org/10.1029/2008GL036843
  5. Benning, L. and A. Wahner, 1998. Measurements of atmospheric formaldehyde (HCHO) and acetaldehyde (CH3CHO) during POPCORN 1994 using 2.4-DNPH coated silica cartridges, J. Atmos. Chem., 31(1): 105-117. https://doi.org/10.1023/A:1005884116406
  6. Carlier, P., H. Hannachi and G. Mouvier, 1986. The chemistry of carbonyl compounds in the atmospherea review, Atmospheric Environment, 20: 2079-2099. https://doi.org/10.1016/0004-6981(86)90304-5
  7. Chance, K., P.I. Palmer, R.J.D. Spurr, R.V. Martin, T.P. Kurosu, and D.J. Jacob, 2000. Satellite observations of formaldehyde over North America from GOME, Geophys. Res. Lett., 27(21): 3461-3464. https://doi.org/10.1029/2000GL011857
  8. de Serves, C. 1994. Gas phase formaldehyde and peroxide measurements in the Arctic atmosphere, Journal of Geophysical Research, 99(D12): 25391-25,398. https://doi.org/10.1029/94JD00547
  9. De Smedt, I., J.F. Muller, T. Stavrakou, R. van der A, H. Eskes, and M. van Roozendael, 2008. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors, Atmospheric Chemistry & Physics, 8: 4947-4963. https://doi.org/10.5194/acp-8-4947-2008
  10. Dufour, G., S. Szopa, M. Barkley, C. Boone, A. Perrin, P. Palmer, and P. Bernath, 2009. Global uppertropospheric formaldehyde: seasonal cycles observed by the ACE-FTS satellite instrument, Atmos. Chem. Phys., 9: 3893-3910. https://doi.org/10.5194/acp-9-3893-2009
  11. Dufour, G., F. Wittrock, M. Camredon, M. Beekmann, A. Richter, B. Aumont, and J. Burrows, 2009. SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe, Atmos. Chem. Phys., 9(5): 1647-1664. https://doi.org/10.5194/acp-9-1647-2009
  12. Duncan, B., J. Logan, I. Bey, I. Megretskaia, R. Yantosca, P. Novelli, N. Jones, and C. Rinsland, 2007. Global budget of CO, 1988-1997: Source estimates and validation with a global model, Journal of Geophysical Research: Atmospheres, 112.
  13. Galanter, M., H. Levy, and G.R. Carmichael, 2000. Impacts of biomass burning on tropospheric CO, NOx, and O3, Journal of Geophysical Research: Atmospheres, 105: 6633-6653. https://doi.org/10.1029/1999JD901113
  14. Kesselmeier, J. and M. Staudt, 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology, J. Atmos. Chem., 33(1): 23-88. https://doi.org/10.1023/A:1006127516791
  15. Kim, J., S. Kim, K. Baek, L., Wang, T., Kurosu, I., De Smedt, K., Chance, and M., Newchurch, 2011. Evaluation of satellite-derived HCHO using statistical methods, Atmos. Chem. Phys. Discuss., 11: 8003-8025.
  16. Kim, J.H., S. Kim, S. Park, and M. Newchurch, 2009. The analyses of satellite-derived HCHO measurements with statistical approaches, Proc. of AGU Fall Meeting Abstracts, San Francisco, CA, Dec.
  17. Kim, J., S. Na, R. Martin, K. Seo, and M. Newchurch, 2008. Singular value decomposition analyses of tropical tropospheric ozone determined from TOMS, Geophys. Res. Lett., 35(15): L15816. https://doi.org/10.1029/2008GL033690
  18. Lathiere, J., D. Hauglustaine, A. Friend, N. De Noblet-Ducoudre, N. Viovy, and G. Folberth, 2006. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmospheric Chemistry and Physics, 6(8).
  19. Lee, M., B.G. Heikes, D.J. Jacob, G. Sachse, and B. Anderson, 1997. Hydrogen peroxide, organic hydroperoxide, and formaldehyde as primary pollutants from biomass burning, Journal of Geophysical Research, 102(D1): 1301-1309. https://doi.org/10.1029/96JD01709
  20. Lil, Q. 2001. Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment, Journal of Geophysical Research, 106(D13): 14539-14550. https://doi.org/10.1029/2000JD900772
  21. Logan, J.A., M.J. Prather, S.C. Wofsy, and M.B. McElroy, 1981. Tropospheric chemistry: A global perspective, Journal of Geophysical Research: Oceans, 86: 7210-7254. https://doi.org/10.1029/JC086iC08p07210
  22. Marais, E., D. Jacob, T. Kurosu, K. Chance, J. Murphy, C. Reeves, G. Mills, S. Casadio, D. Millet, and M. Barkley, 2012. Isoprene emissions in Africa inferred from OMI observations of formaldehyde, Atmos. Chem. Phys., 12: 6219-6235. https://doi.org/10.5194/acp-12-6219-2012
  23. Martin, R.V., 2008. Satellite remote sensing of surface air quality, Atmos. Environ., 42: 7823-7843. https://doi.org/10.1016/j.atmosenv.2008.07.018
  24. Martin, R., D. Parrish, T. Ryerson, D. Nicks Jr, K. Chance, T. Kurosu, D. Jacob, E. Sturges, A. Fried, and B. Wert, 2004. Evaluation of GOME satellite measurements of tropospheric $NO_2$ and HCHO using regional data from aircraft campaigns in the southeastern United States, Journal of geophysical research, 109: D24307. https://doi.org/10.1029/2004JD004869
  25. Mauzerall, D.L., D.J. Jacob. S.M. Fan, J.D. Bradshaw, G.L. Gregory, G.W. Sachse and D.R. Blake, 1996. Origin of tropospheric ozone at remote high northern latitudes in summer, Journal of Geophysical Research: Atmospheres, 101: 4175-4188. https://doi.org/10.1029/95JD03224
  26. Millet, D.B., D.J. Jacob, K.F. Boersma, T.M. Fu, T.P. Kurosu, K. Chance, C.L. Heald, and A. Guenther, 2008. Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor, Journal of Geophysical Research, 113: D02307.
  27. Myneni, R.B., W. Yang, R.R. Nemani, A.R. Huete, R E. Dickinson, Y. Knyazikhin, K. Didan, R. Fu, R.I. NegronJuarez, and S.S. Saatchi, 2007. Large seasonal swings in leaf area of Amazon rainforests, Proc. of the National Academy of Sciences, 104: 4820-4823. https://doi.org/10.1073/pnas.0611338104
  28. Palmer, P.I., D.S. Abbot, T.M. Fu, D.J. Jacob, K.V. Chance, T.P. Kurosu, A. Guenther, C. Wiedinmyer, J.C. Stanton, and M.J. Pilling, 2006. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, Journal of Geophysical Research, 111: D12315. https://doi.org/10.1029/2005JD006689
  29. Palmer, P.I., M.P. Barkley, T.P. Kurosu, A.C. Lewis, J.E. Saxton, K. Chance, and L.V. Gatti, 2007. Interpreting satellite column observations of formaldehyde over tropical South America, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1856): 1741-1751. https://doi.org/10.1098/rsta.2007.2042
  30. Palmer, P.I., D.J. Jacob, A.M. Fiore, R.V. Martin, K. Chance, and T.P. Kurosu, 2003. Mapping isoprene emissions over North America using formaldehyde column observations from space, Journal of Geophysical Research, 108(D6): 4180. https://doi.org/10.1029/2002JD002153
  31. Palmer, P.I., D.J. Jacob, K. Chance, R.V. Martin, R.J. Spurr, T.P. Kurosu, I. Bey, R. Yantosca, A. Fiore, and Q. Li, 2001. Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment, Journal of Geophysical Research: Atmospheres, 106: 14539-14550. https://doi.org/10.1029/2000JD900772
  32. Pfister, G., L. Emmons, P. Hess, J.F. Lamarque, J. Orlando, S. Walters, A. Guenther, P. Palmer, and P. Lawrence, 2008. Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4, Journal of Geophysical Research, 113(D5): D05308.
  33. Sabolis, A., N. Meskhidze, G. Curci, P. Palmer, and B. Gantt, 2011. Interpreting elevated space-borne HCHO columns over the Mediterranean Sea using the OMI sensor, Atmos. Chem. Phys, 11: 12787-12798. https://doi.org/10.5194/acp-11-12787-2011
  34. Spurr, R., T. Kurosu, and K. Chance, 2001. A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval, Journal of Quantitative Spectroscopy and Radiative Transfer, 68(6): 689-735. https://doi.org/10.1016/S0022-4073(00)00055-8
  35. Stavrakou, T., J. Muller, I. De Smedt, M. Van Roozendael, G. van der Werf, L. Giglio, and A. Guenther, 2009a. Global emissions of nonmethane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003-2006, Atmos. Chem. Phys., 9: 3663-3679. https://doi.org/10.5194/acp-9-3663-2009
  36. Stavrakou, T., J. Muller, I. De Smedt, M. Van Roozendael, G. van der Werf, L. Giglio, and A. Guenther, 2009b. Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde, Atmos. Chem. Phys, 9: 1037-1060. https://doi.org/10.5194/acp-9-1037-2009
  37. Strik, H. and L. Boves, 1987. Fundamental frequency and intensity control in speech, J. Acoust. Soc. Am., 82: S17.
  38. Sultan, B. and S. Janicot, 2000. Abrupt shift of the ITCZ over West Africa and intra-seasonal variability, Geophys. Res. Lett., 27(29): 3353-3356. https://doi.org/10.1029/1999GL011285
  39. Thomas, W., E. Hegels, S. Slijkhuis, R. Spurr, and K. Chance, 1998. Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer, Geophys. Res. Lett., 25(9): 1317-1320. https://doi.org/10.1029/98GL01087
  40. Todd, M., R. Washington, and T. James, 2003. Characteristics of summertime daily rainfall variability over South America and the South Atlantic Convergence Zone, Meteorology and Atmospheric Physics, 83(1): 89-108. https://doi.org/10.1007/s00703-002-0563-9
  41. Venegas, S., L. Mysak, and D. Straub, 1997. Atmosphere-ocean coupled variability in the South Atlantic, J. Clim., 10(11): 2904-2920. https://doi.org/10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2
  42. Williams, J., H. Fischer, P. Hoor, U. Poschl, P. Crutzen, M. Andreae, and J. Lelieveld, 2001. The influence of the tropical rainforest on atmospheric CO and $CO_2$ as measured by aircraft over Surinam, South America, Chemosphere-Global Change Science, 3(2): 157-170. https://doi.org/10.1016/S1465-9972(00)00047-7
  43. Wittrock, F., A. Richter, H. Oetjen, J.P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner, 2006. Simultaneous global observations of glyoxal and formaldehyde from space, Geophys. Res. Lett., 33(16): 16804. https://doi.org/10.1029/2006GL026310
  44. Yun, W.T and W.T. Kwon, W. 2002. SVD multi-model superensemble technique for long-term prediction, Korean Journal of the Atmospheric Sciences, 5: 217-228.