• Title/Summary/Keyword: mass optimization

Search Result 711, Processing Time 0.031 seconds

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

On the optimum design of reinforcement systems for old masonry railway tunnels

  • Ghyasvand, Soheil;Fahimifar, Ahamd;Nejad, Fereidoon Moghadas
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Safety is a most important parameters in underground railway transportation; Also stability of underground tunnel is very important in tunneling engineering. Design of a reliable support system requires an evaluation of both ground demand and support capacity. Iran's traditional railway tunnels are mainly supported with masonry structures or unsupported in high quality rock masses. A decrease in rock mass quality due to changes in groundwater regime creep and fatigue in rock and similar phenomena causes tunnel safety to decrease during time. The case study is an old tunnel in Iran, called "Keshvar"; it is more than 50 years old railway organization. In operating this Tunnel, until the several problems came up based on stability and leaking water. The goal of study is evaluation of the various reinforcement systems for supporting of the tunnel. The optimal selection of the reinforcement system is examined using TOPSIS Fuzzy method in light of the looming and available uncertainties. Several factors such as; the tunnel span, maintenance, drainage, sealing, ventilation, cost and safety were based to choose the method and system of designing. Therefore, by identifying these parameters, an optimal reinforcement system was selected and introduced. Based on optimization system for analysis, it is revealed that the systematic rock bolts and shotcrete protection had a most appropriate result for these kind of tunnel in Iran.

A Theoretical Study on the Hydrogen Temperature Evolution Inside the Tank under Fast Filling Process (급속 충전에서 탱크 내부의 수소 온도 변화에 관한 이론 연구)

  • JI-CHAO LI;JI-QIANG LI;HENG XU;BYUNG CHUL CHOI;JEONG-TAE KWON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.608-614
    • /
    • 2023
  • The fast filling process of high-pressure hydrogen has an important impact on the filling efficiency and safety. In this paper, a specific study is carried out on the thermophysical phenomena during the fast filling process. Starting from the gas state equation of hydrogen, the change law of the hydrogen storage temperature is obtained, and then the temperature rise prediction is constructed. The model can clarify the relationship between the filling parameters and the temperature rise during the fast filling process, thereby revealing the flow and heat transfer laws of the fast charging process. To improve the theoretical research basis for the evaluation of vehicle-mounted hydrogen fast charging capacity, temperature prediction and optimization of hydrogenation methods.

A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae (미세조류 이용 바이오디젤 항공유 기술개발 동향 연구)

  • Han-Young Yoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

Neutronic optimization of thorium-based fuel configurations for minimizing slightly used nuclear fuel and radiotoxicity in small modular reactors

  • Nur Anis Zulaikha Kamarudin;Aznan Fazli Ismail;Mohamad Hairie Rabir;Khoo Kok Siong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2641-2649
    • /
    • 2024
  • Effective management of slightly used nuclear fuel (SUNF) is crucial for both technical and public acceptance reasons. SUNF management, radiotoxicity risk, and associated financial investment and technological capabilities are major concerns in nuclear power production. Reducing the volume of SUNF can simplify its management, and one possible solution is utilizing small modular reactors (SMR) and advanced fuel designs like those with thorium. This research focuses on studying the neutronic performance and radionuclide inventory of three different thorium fuel configurations. The mass of fissile material in thorium-based fuel significantly impacts Kinf, burn-up, and neutron energy spectrum. Compared to uranium, thorium as a fuel produces far fewer transuranic elements and less long-lived fission products (LLFPs) at the end of the core cycle (EOC). However, certain fission product elements produced from thorium-based fuel exhibit higher radioactivity at the beginning of the core cycle (BOC). Physical separation of thorium and uranium in the fuel block, like seed-and-blanket units (SBU) and duplex fuel designs, generate less radioactive waste with lower radioactivity and longer cycle lengths than homogeneous or mixed thorium-uranium fuel. Furthermore, the SBU and duplex feel designs exhibit comparable neutron spectra, leading to negligible differences in SUNF production between the two.

Development of a Multi-Purpose Mobility Prototype based on Human Tracking System (사용자 추종 시스템 기반의 다목적 모빌리티 시제품 개발)

  • Donggun Kim;Bumsu Park;Yunsu Lee;Jeseong Jeon;Seongyeon Hwang;Hyoungwook Lee
    • Journal of Institute of Convergence Technology
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2023
  • The rise of electrification and the advancement of autonomous driving technologies are leading to new forms of mobility, such as serving and delivery robots. However, due to factors such as the small-scale production of various products and the high cost of autonomous driving sensors, product prices have risen, limiting accessibility to consumers. To improve this, we developed a multi-purpose mobility platform that is mass-producible, based on inexpensive, reliable sensors and a configurable human tracking system. As a result, the unit price is approximately 50% of the launch prices of other mobility products, and additional cost savings are possible through component optimization in the future. In addition, more added value will be created through the distribution of integrated mobility platforms that can be combined with various usable modules to meet a variety of user needs, such as cargo transportation, wheelchair power kits, and mobile monitors.

Analytical Determination of Vitamin B12 Content in Infant and Toddler Milk Formulas by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

  • Lee, Jung-Hoon;Shin, Jin-Ho;Park, Jung-Min;Kim, Ha-Jung;Ahn, Jang-Hyuk;Kwak, Byung-Man;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.765-771
    • /
    • 2015
  • The development of a sample preparation method and optimization of the analytical instrumentation conditions were performed for the determination of the vitamin B12 content in emulsified baby foods sold on the Korea market. After removal of the milk protein and fats by chloroform extraction and centrifugation, the vitamin B12 was water extracted from the sample. Following filtration of the solution through a nylon filter, the water-soluble extract was purified by solid-phase extraction using a Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The solution eluted from the cartridge was dried under a stream of nitrogen gas and reconstituted with 1 mL of water. The sample solution was injected into an LC-MS/MS system after optimizing the mobile phase for vitamin B12 detection. The calibration curve showed good linearity with the coefficient of correlation (r2) value of 0.9999. The limit of detection was 0.03 µg/L and the limit of quantitation was 0.1 µg/L. The method of detection limit was 0.02 µg/kg. The vitamin B12 recovery from a spiking test was 99.62% for infant formula and 99.46% for cereal-based baby food. The sample preparation method developed in this study would be appropriate for the rapid determination of the vitamin B12 content in infant formula and baby foods with emulsified milk characteristics. The ability to obtain stable results more quickly and efficiently would also allow governments to exercise a more extensive quality control inspection and monitoring of products expected to contain vitamin B12. This method could be implemented in laboratories that require time and labor saving.

Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis (공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화)

  • Kim, Jooil;Park, Sunyoung;Park, Mi-Kyung;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.

Optimization of Catalytic Reaction for Synthesis of 2-Methyl-4-methoxydiphenylamine (2-Methyl-4-methoxydiphenylamine 합성을 위한 촉매반응의 최적화)

  • Cho, Jeong-Woo;Kim, Eun-Seok;Kim, Kiseok;Kim, Seong-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.293-298
    • /
    • 1999
  • Reaction mechanism was elucidated and reaction condition were optimized for the catalytic reaction synthesizing 2-methyl-4-methoxy-diphenylamine (MMDPA) which is an intermediate of Fluoran heat-sensitive dyestuff. Reactants consisted of 2-methyl-4-methoxyaniline (MMA), 3-methyl-4-nitroanisole (MNA), and cyclohexanone, and 5 wt % Pd/C was used as a catalyst. Experiments were run in an open slurry reactor equipped with reflux condenser, and products were analyzed by means of GC/MS and NMR. MMDPA yield of 90 mole % could be obtained after reaction time of 8~10 hours under the optimal reaction conditions comprising the reaction mass composition of MMA : MNA : cyclohexanone = 1 : 2 : 150 based on MMA input of 0.01 gmoles in xylene solvent, reaction temperature of $160^{\circ}C$, and catalyst amount of 0.5 g. It was found that the rate-determining step of overall reaction was dehydrogenation of the intermediate product obtained from condensation of MMA and cyclohexanone. Overall reaction rate and MMDPA yield were enhanced owing to hydrogen transfer reaction by introducing MNA together with MMA in the reaction mass. Excess cyclohexanone in the reaction mass played an important role of promoting the condensation of MMA and cyclohexanone.

  • PDF