DOI QR코드

DOI QR Code

Neutronic optimization of thorium-based fuel configurations for minimizing slightly used nuclear fuel and radiotoxicity in small modular reactors

  • Nur Anis Zulaikha Kamarudin (Nuclear Science Programme, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Aznan Fazli Ismail (Nuclear Science Programme, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Mohamad Hairie Rabir (Nuclear Science Programme, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Khoo Kok Siong (Nuclear Science Programme, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2023.10.17
  • Accepted : 2024.02.11
  • Published : 2024.07.25

Abstract

Effective management of slightly used nuclear fuel (SUNF) is crucial for both technical and public acceptance reasons. SUNF management, radiotoxicity risk, and associated financial investment and technological capabilities are major concerns in nuclear power production. Reducing the volume of SUNF can simplify its management, and one possible solution is utilizing small modular reactors (SMR) and advanced fuel designs like those with thorium. This research focuses on studying the neutronic performance and radionuclide inventory of three different thorium fuel configurations. The mass of fissile material in thorium-based fuel significantly impacts Kinf, burn-up, and neutron energy spectrum. Compared to uranium, thorium as a fuel produces far fewer transuranic elements and less long-lived fission products (LLFPs) at the end of the core cycle (EOC). However, certain fission product elements produced from thorium-based fuel exhibit higher radioactivity at the beginning of the core cycle (BOC). Physical separation of thorium and uranium in the fuel block, like seed-and-blanket units (SBU) and duplex fuel designs, generate less radioactive waste with lower radioactivity and longer cycle lengths than homogeneous or mixed thorium-uranium fuel. Furthermore, the SBU and duplex feel designs exhibit comparable neutron spectra, leading to negligible differences in SUNF production between the two.

Keywords

Acknowledgement

This work was supported by the Universiti Kebangsaan Malaysia through the Grant GUP-2021-039.

References

  1. E.S. Aziman, A.H.J. Mohd Salehuddin, A.F. Ismail, Remediation of thorium (IV) from wastewater: current status and way forward, Separ. Purif. Rev. 50 (2) (2021) 177-202.  https://doi.org/10.1080/15422119.2019.1639519
  2. NEA, Uranium 2022: resources, production and demand AGENCY, Oecd (2023) 12-13. 
  3. Nuclear Energy Agency, Introduction of thorium in the nuclear fuel cycle Short- to long-term considerations, Nuclear Energy Agency 1 (2015) 133. 
  4. M.H. Rabir, A.F. Ismail, M.S. Yahya, Neutronics calculation of the conceptual TRISO duplex fuel rod design, Nuclear Materials and Energy 27 (2021). 
  5. C.N.A. Che Zainul Bahri, A.F. Ismail, A. Ab Majid, Synthesis of thorium tetrafluoride (ThF 4) by ammonium hydrogen difluoride (NH 4 HF 2), Nucl. Eng. Technol. 51 (3) (2019) 792-799.  https://doi.org/10.1016/j.net.2018.12.023
  6. M.H. Rabir, A.F. Ismail, M.S. Yahya, Review of the microheterogeneous thoriaurania fuel for micro-sized high temperature reactors, Int. J. Energy Res. 45 (8) (2021) 11440-11458.  https://doi.org/10.1002/er.5923
  7. A.F. Ismail, M.S. Yim, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater, Nucl. Eng. Technol. 47 (5) (2015) 579-587.  https://doi.org/10.1016/j.net.2015.02.002
  8. X. Xu, L. Xu, J. Ao, Y. Liang, C. Li, Y. Wang, C. Huang, F. Ye, Q. Li, X. Guo, J. Li, H. Wang, S. Ma, H. Ma, Ultrahigh and economical uranium extraction from seawater: via interconnected open-pore architecture poly(amidoxime) fiber, J. Mater. Chem. A 8 (42) (2020) 22032-22044.  https://doi.org/10.1039/D0TA07180C
  9. M.B. Schaffer, Abundant thorium as an alternative nuclear fuel Important waste disposal and weapon proliferation advantages, Energy Pol. 60 (2013) 4-12.  https://doi.org/10.1016/j.enpol.2013.04.062
  10. Edwin H. Uguru, S.F. Abdul Sani, M.U. Khandaker, M.H. Rabir, J.A. Karim, D. U. Onah, D.A. Bradley, Burn-up calculation of the neutronic and safety parameters of thorium-uranium mixed oxide fuel cycle in a Westinghouse small modular reactor, Int. J. Energy Res. 45 (8) (2021) 12013-12028.  https://doi.org/10.1002/er.6000
  11. Edwin Humphrey Uguru, S.F.A. Sani, M.U. Khandaker, M.H. Rabir, Investigation on the effect of 238U replacement with 232Th in small modular reactor (SMR) fuel matrix, Prog. Nucl. Energy 118 (2020) 103108. 
  12. B. Zohuri, Generation IV Nuclear Reactors, Nuclear Reactor Technology Development and Utilization. Elsevier Ltd, 2020. 
  13. C. Garcia, J. Rosales, L. Garcia, A. Munoz, F. Rosales, C. Brayner, J. Perez, Evaluation of uranium thorium and plutonium thorium fuel cycles in a very high temperature hybrid system, Prog. Nucl. Energy 66 (2013) 61-72.  https://doi.org/10.1016/j.pnucene.2013.03.013
  14. S.M. Mirvakili, M. Alizadeh Kavafshary, A. Joze Vaziri, Comparison of neutronic behavior of UO 2 , (Th- 233 U)O 2 and (Th- 235 U)O 2 fuels in a typical heavy water reactor, Nucl. Eng. Technol. 47 (3) (2015) 315-322.  https://doi.org/10.1016/j.net.2014.12.014
  15. C. Qiu, R. Liu, J. Cai, W. Zhou, Multiphysics analysis of thorium-based fuel performance with a two-layer SiC cladding under normal operating and transient conditions in a light water reactor, Ann. Nucl. Energy 163 (2021) 108543. 
  16. C. Dugal, A. Colton, S. Golesorkhi, B.P. Bromley, Modeling and mitigation of bundle end power peaking in pressure tube heavy water reactor advanced fuels using thorium dioxide, Ann. Nucl. Energy 120 (2018) 625-629.  https://doi.org/10.1016/j.anucene.2018.06.018
  17. B.M. Elsheikh, ScienceDirect Safety assessment of molten salt reactors in comparison with light water reactors, Journal of Radiation Research and Applied Sciences 6 (2) (2013) 63-70.  https://doi.org/10.1016/j.jrras.2013.10.008
  18. G. Zheng, H. Wu, J. Wang, S. Chen, Y. Zhang, Thorium-based molten salt SMR as the nuclear technology pathway from a market-oriented perspective, Ann. Nucl. Energy 116 (2018) 177-186. https://doi.org/10.1016/j.anucene.2018.02.004
  19. C. Zou, C. Yu, J. Wu, X. Cai, J. Chen, Transition to thorium fuel cycle in a small modular molten salt reactor based on a batch reprocessing mode, Ann. Nucl. Energy 138 (2020) 107163. 
  20. M.A. Alzamly, M. Aziz, A.A. Badawi, H.A. Gabal, A.R.A. Gadallah, Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide, Nucl. Eng. Technol. 52 (4) (2020) 674-680.  https://doi.org/10.1016/j.net.2019.09.012
  21. M.H. Rabir, A.F. Ismail, M.S. Yahya, A neutronic investigation of tristructural isotropic-duplex fuel in a high-temperature reactor prismatic seed-and-blanket fuel block configuration with reduced power peaking, Int. J. Energy Res. 45 (13) (2021) 19265-19288.  https://doi.org/10.1002/er.7021
  22. H.J. Rutten, K.A. Haas, Research on the incineration of plutonium in a modular HTR using thorium-based fuel, Nucl. Eng. Des. 195 (3) (2000) 353-360.  https://doi.org/10.1016/S0029-5493(99)00222-8
  23. N.R. Brown, R. Hernandez, A.T. Nelson, High volume packing fraction TRISO-based fuel in light water reactors, Prog. Nucl. Energy 146 (2022) 1-17.  https://doi.org/10.1016/j.pnucene.2022.104151
  24. G. Zhu, Y. Zou, H. Xu, Y. Dai, M. Li, R. Yan, Uranium utilization with thorium blanket in Pebble Bed Fluoride salt-cooled high temperature reactor, Prog. Nucl. Energy 83 (2015) 374-386.  https://doi.org/10.1016/j.pnucene.2015.04.015
  25. H. Chang, Y. Yang, X. Jing, Y. Xu, Thorium-based fuel cycles in the modular high temperature reactor, Tsinghua Sci. Technol. 11 (6) (2006) 731-738.  https://doi.org/10.1016/S1007-0214(06)70257-7
  26. A.A. Galahom, Reducing the plutonium stockpile around the world using a new design of VVER-1200 assembly, Ann. Nucl. Energy 119 (2018) 279-286.  https://doi.org/10.1016/j.anucene.2018.05.022
  27. A.A. Galahom, Examine the possibility of increasing the plutonium incineration rate in the current operating pressurized water reactor, Prog. Nucl. Energy 142 (October) (2021) 104026. 
  28. Ming Ding, J.L. Kloosterman, Thorium utilization in a small long-life HTR. Part II: seed-and-blanket fuel blocks, Nucl. Eng. Des. 267 (2014) 245-252.  https://doi.org/10.1016/j.nucengdes.2013.08.076
  29. A.A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide, Nucl. Eng. Des. 314 (2017) 165-172.  https://doi.org/10.1016/j.nucengdes.2017.01.024
  30. A.V. Colton, B.P. Bromley, Lattice physics evaluation of 35-element mixed oxide thorium-based fuels for use in pressure tube heavy water reactors, Ann. Nucl. Energy 117 (2018) 259-276.  https://doi.org/10.1016/j.anucene.2018.03.010
  31. S. Atkinson, T.J. Abram, D. Litskevich, B. Merk, Small modular high temperature reactor optimisation - Part 1: a comparison between beryllium oxide and nuclear graphite in a small scale high temperature reactor, Prog. Nucl. Energy 111 (May 2018) (2019) 223-232.  https://doi.org/10.1016/j.pnucene.2018.10.017
  32. M. Ding, J.L. Kloosterman, Parametric neutronics design of a small and long-life HTR, Proceedings of HTR 9 (2010). 
  33. Ming Ding, J.L. Kloosterman, Thorium utilization in a small long-life HTR. Part I: Th/U MOX fuel blocks, Nucl. Eng. Des. 267 (2014) 238-244.  https://doi.org/10.1016/j.nucengdes.2013.08.074
  34. J. Verrue, M. Ding, J.L. Kloosterman, Thorium utilisation in a small long-life HTR. Part III: composite-rod fuel blocks, Nucl. Eng. Des. 267 (2014) 253-262.  https://doi.org/10.1016/j.nucengdes.2013.08.075
  35. M.H. Rabir, A.F. Ismail, M.S. Yahya, The neutronics effect of TRISO duplex fuel packing fractions and their comparison with homogeneous thorium-uranium fuel, Int. J. Energy Res. 46 (13) (2022) 19072-19089.  https://doi.org/10.1002/er.8226
  36. M.H. Rabir, A.F. Ismail, M.S. Yahya, A micro-sized high-temperature thorium reactor with Duplex TRISO fuel with enhanced thorium utilization compared to the SBU configuration, Fuel 354 (January) (2023) 129316. 
  37. J. Frybort, Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor, Radiat. Phys. Chem. 104 (2014) 408-413.  https://doi.org/10.1016/j.radphyschem.2014.05.038
  38. U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects, Renew. Sustain. Energy Rev. 97 (August) (2018) 259-275.  https://doi.org/10.1016/j.rser.2018.08.019
  39. B.S. Van Gosen, H. Tulsidas, Thorium as a nuclear fuel, Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel (Iv) (2016) 253-296. 
  40. M.J.B. Kabeyi, O.A. Olanrewaju, Sustainable energy transition for renewable and low carbon grid electricity generation and supply, Front. Energy Res. 9 (March) (2022) 1-45.  https://doi.org/10.3389/fenrg.2021.743114
  41. L. Carlson, J. Miller, Z. Wu, Implications of HALEU fuel on the design of SMRs and micro-reactors, Nucl. Eng. Des. 389 (September 2021) (2022) 111648. 
  42. D.T. Wojtaszek, B.P. Bromley, Reactor physics assessment of annular plutonium-thorium fuels for use in prismatic fuel blocks in a HTGR-SMR with a hydrogen-based moderator, International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (2023). M&C 2023) (August). 
  43. M. Grodzki, P. Darnowski, G. Niewinski, Monte Carlo analysis of the battery-type high temperature gas cooled reactor, Arch. Therm. 38 (4) (2017) 209-227.  https://doi.org/10.1515/aoter-2017-0032
  44. A.S. Gerasimov, B.R. Bergelson, T.S. Zaritskaya, G.V. Tikhomirov, Comparison of decay heat power of uranium, plutonium, and thorium spent fuel at long-term storage, International Conference on Nuclear Engineering, Proceedings, ICONE 4 (SMiRT 18) (2002) 481-484. 
  45. A.A. Hassan, S.H. Alassaf, V.I. Savander, V.V. Afanasyev, M.A. Abu Sondos, Investigation of using U-233 in thorium base instead of conventional fuel in Russian PWR by SERPENT Code, J. Phys. Conf. 1689 (1) (2020). 
  46. Sergei V. Beliavskii, V.N. Nesterov, R.A. Laas, A.V. Godovikh, O.I. Bulakh, Effect of fuel nuclide composition on the fuel lifetime of reactor KLT-40S, Nucl. Eng. Des. 360 (January) (2020) 110524. 
  47. A.A. Galahom, M.Y.M. Mohsen, N. Amrani, Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: neutronic analysis, Nucl. Eng. Technol. 54 (1) (2022) 1-10.  https://doi.org/10.1016/j.net.2021.07.019
  48. N.R. Brown, A. Worrall, M. Todosow, Impact of thermal spectrum small modular reactors on performance of once-through nuclear fuel cycles with low-enriched uranium, Ann. Nucl. Energy 101 (2017) 166-173.  https://doi.org/10.1016/j.anucene.2016.11.003
  49. E. Shwageraus, X. Zhao, M.J. Driscoll, P. Hejzlar, M.S. Kazimi, J.S. Herring, Microheterogeneous thoria-urania fuels for pressurized water reactors, Nucl. Technol. 147 (1) (2004) 20-36.  https://doi.org/10.13182/NT04-A3512
  50. H.C. Lee, H.S. Lim, T.Y. Han, S. Cerba, A neutronic feasibility study on a small LEU fueled reactor for space applications, Ann. Nucl. Energy 77 (2015) 35-46.  https://doi.org/10.1016/j.anucene.2014.10.015
  51. X. Zhao, E.E. Pilat, K.D. Weaver, P. Hejzlar, A PWR thorium pin cell burnup benchmark, in: Proceedings of the PHYSOR 2000 - ANS International Topical Meeting on Advances in Reactor Physics and Mathematics and Computation into the Next Millennium 1-14, 2000. 
  52. J. Li, X. Li, J. Cai, Neutronic characteristics and feasibility analysis of microheterogeneous duplex ThO2-UO2 fuel pin in PWR, Nucl. Eng. Des. 382 (March) (2021) 111382. 
  53. H.B. van der Walt, F. van Niekerk, F. Reitsma, Implementation of in-rod axially heterogeneous thorium-uranium fuel in a typical PWR, Nucl. Eng. Des. 408 (January 2022) (2023) 112319. 
  54. N. Kodochigov, Y. Sukharev, E. Marova, N. Ponomarev-Stepnoy, E. Glushkov, P. Fomichenko, Neutronic features of the GT-MHR reactor, Nucl. Eng. Des. 222 (2-3 SPEC) (2003) 161-171.  https://doi.org/10.1016/S0029-5493(03)00010-4
  55. S. Beliavskii, N. Anikin, S. Alhassan, S. Kudeev, V. Nesterov, Effect of fuel nuclide composition on the fuel lifetime of the RITM-200 reactor unit, Ann. Nucl. Energy 173 (2022) 109105. 
  56. F. El Banni, O. Kabach, A.A. Koua, B.L.H. Gogon, G.A. Monnehan, A. Benchrif, H. Amsil, A. Chetaine, Neutronic feasibility study of (Th-233U)-ZrH1.65 fuel in a modelled TRIGA research reactor, J. King Saud Univ. Sci. 34 (2) (2022) 101769. 
  57. C.B. R Sher, Fission Energy Release for 16 Fissioning Nuclides, Electric Power Research Institute (Report) EPRI NP, 1981, 1771). 
  58. A.G. Croff, S.L. Krahn, Comparative assessment of thorium fuel cycle radiotoxicity, Nucl. Technol. 194 (2) (2016) 271-280.  https://doi.org/10.13182/NT15-46
  59. D. Raj, U. Kannan, Operational characteristics of LWR core fuelled with thorium-based fuel, Ann. Nucl. Energy 188 (October 2022) (2023) 109801. 
  60. Michael Todosow, A. Galperin, S. Herring, M. Kazimi, T. Downar, A. Morozov, Use of thorium in light water reactors, Nucl. Technol. 151 (2) (2005) 168-176.  https://doi.org/10.13182/NT151-168
  61. C.J. Jeong, C.J. Park, W. Il Ko, Dynamic analysis of a thorium fuel cycle in CANDU reactors, Ann. Nucl. Energy 35 (10) (2008) 1842-1848. https://doi.org/10.1016/j.anucene.2008.04.010