• Title/Summary/Keyword: marine reactor

Search Result 111, Processing Time 0.023 seconds

세계의 원자력선

  • 정운혁
    • Nuclear Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.53-68
    • /
    • 1975
  • The world's nuclear powered ships have been reviewed mainly based on development of the marine nuclear reactor and the present trends of nuclear warships and merchant ships in the world. In particular, emphasis was on the four nonmilitary nuclear ships, Russian Ice breaker Lenin, American Cargo-passenger ship Savannah, German Ore carrier Otto Hahn, and Japanese Cargo ship Mutsu. They are the only civilian nuclear ships which have entered service at the present time in the world. The nuclear fleets in United States, United Kingdom, Soviet, and France were described in view of historical development and the present stock of the nuclear ships. The present projects and the future trends for the nuclear merchant ships in the main shipbuilding countries have been also discussed. The nuclear fission and reactor were briefly discussed in the beginning of this article.

  • PDF

Temperature analysis of extra vessel electromagnetic pump cooling for a Micro nuclear reactor with an electric power of 20 MW

  • Tae Uk Kang;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.275-282
    • /
    • 2024
  • Lead bismuth eutectic (LBE) is used as coolant for MicroURANUS, a small marine nuclear power plant, and this coolant is transported in the plant by an electromagnetic pump. Given the considerable heat generated by the electromagnetic pump, the cooling of the pump is essential. This study compared air cooling and water-cooling methods and found that the maximum temperatures during air and water cooling were 640 K and 372 K, respectively. These findings were utilized to design an electromagnetic pump with water-cooling. The maximum temperature of the pump was lower than the boiling point of water; thus, the pump did not require a separate pressurization. Consequently, the resistance problem of the coil and the deformation problem of the material caused by generated heat can be solved through water-cooling.

A study on the Computer-Aided automatic Design of marine water ejector (선박용 수이젝터의 자동설계를 위한 전산프로그램의 개발)

  • 김경근;김용모;김주년;남청도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.74-84
    • /
    • 1986
  • Ejectors, having no moving, lubricating and leaking parats, are widely used as marine pumps because of its high working confidence. For instance, uses in ships are stripping in crude oil tank, bilge discharge in engine room, ballast water pumping on are carrier, and brine discharge from fresh water generator. And it is also used as cooling water recirculating pump in boiling water type nuclear reactor and deep-well pump. It is not easy to determine the optimal dimension for designing each ejector agreed with its suggested performance condition, because complicated calculations must be repeated to obtain the maximum efficiency affected by flowrate ratio, head ratio, area ratio and so on. Therefore, it is considered that the CAD (Computer-Aided Design) for ejector is a powerful method for design according to the individual design condition. In this paper, a computer program for water ejector design is developed based on the previous paper on theoretical analysis and experimental results for water ejector. And from the theoretical approach, an equation for the working limit and an equation for determing the shape of throat are obtained. The validity of the present computer program is sufficiently confirmed through the comparison of the computed results with the main dimension of the previous manufactured water ejector. This program will be easily developed as the CAD for various kinds of ejectors, including steam ejector.

  • PDF

Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery

  • Yang, Ji-Hyun;Shin, Hee-Yong;Ryu, Young-Jin;Lee, Choul-Gyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.267-273
    • /
    • 2018
  • Hydrothermal liquefaction of Chlorella vulgaris feedstock containing 80% (w/w) water was conducted in a batch reactor as a function of temperature (300, 325 and $350^{\circ}C$) and reaction times (5, 10 and 30 min). The biocrude yield, elemental composition and higher heating value obtained for various reaction conditions helped to predict the optimum conditions for maximizing energy recovery. To optimize the recovery of inorganic nutrients, we further investigated the effect of reaction conditions on the ammonium ($NH_4{^+}$), phosphate ($PO_4{^{3-}}$), nitrate ($NO_3{^-}$) and nitrite ($NO_2{^-}$) concentrations in the aqueous phase. A maximum energy recovery of 78% was obtained at $350^{\circ}C$ and 5 min, with a high energy density of 34.3 MJ/kg and lower contents of oxygen. For the recovery of inorganic nutrients, shorter reaction times achieved higher phosphorus recovery, with maximum recovery being 53% at $350^{\circ}C$ and 5 min. Our results indicate that the reaction condition of $350^{\circ}C$ for 5 min was optimal for maximizing energy recovery with improved quality, at the same time achieving a high phosphorus recovery.

A Study on Microorganism Dominant Species in Bench-scale Shipboard STP Using Combined SBR and MBR Process (SBR 및 MBR 복합공정을 적용한 Bench-scale Shipboard STP에서의 미생물 우점종에 관한 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;mansoor, Sana;Kwon, Min-Ji;Jung, Jin-Hee;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 2018
  • International Maritime Organization (IMO) is one of the most effective organizations in evolving international law for the protection and conservation of the marine environment. The IMO, MARPOL(Marine Pollution) 73/78 contains six Annexes that provide an overarching framework for the objectives of the international marine pollution. Annex IV was regulated by 64 th resolution in 2012 to control sea pollution from sewage. In 2014 large-scale wastewater treatment and nutrient removal device was developed with a grant from the Ministry of Oceans and Fisheries. A combined new process of Sequence Batch Reactor (SBR) and Membrane Bioreactor(MBR) was developed to overcome the pollution caused by shipboard sewage. In the present study, shipboard sewage wastewater was treated by mixing and aeration cycle in the newly developed SBR process. Furthermore, during analysis by NGS technique(Macrogen Co., Ltd.), dominant species of bacteria were found in the aeration tank of the Bench-scale wastewater treatment facility. Bacteroidetes and Gammaproteobacteria accounted for 27.1 % of the aerobicbacteria and 16.8 % of the anaerobicbacteria, respectively. Microorganisms play a vital role in shipboard wastewater treatment. A further detailed study is required to understand the precise role of the microorganisms in the wastewater treatment.

GA-Based Design of a Nonlinear PID Controller and Application to a CSTR Process (GA 기반의 비선형 PID 제어기 설계 및 CSTR 프로세스에 응용)

  • Lee, Joo-Yeon;So, Gun-Baek;Lee, Yun-Hyung;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • Several complex processes that are employed in industries, such as shipping, power plants, and the petrochemical industry, involve time-varying behavior as well as strong nonlinear behavior during operation. The fixed-parameter proportional-integral-derivative (PID) controllers have difficulty in dealing with control problems that occur in such processes. In this paper, we propose a method of designing a nonlinear PID controller for industrial processes that exhibit a large number of nonlinearities and time-varying behavior. The gains of the nonlinear PID controller are characterized by a simple nonlinear function of the error and/or error rate depending on the process set-point and output. We tune the user-defined parameters using a genetic algorithm by minimizing the integral of time absolute error (ITAE) index. We verify the effectiveness of the proposed method by performing a comparison of the proposed method and two other nonlinear and adaptive methods that are employed for reference tracking, disturbance-rejection performances, and robustness to parameter changes on a continuously stirred tank reactor.

Combined De-NOx Process with $NH_3$ SCR and Non-thermal Plasma Process for Removing NOx and Soot from Diesel Exhaust Gases

  • Chung, Kyung-Yul;Song, Young-Hoon;Oh, Sang-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.657-665
    • /
    • 2003
  • Combined De-NOx Process in which $NH_3$ SCR (Selective Catalytic Reduction) and non-thermal Plasma Process are simultaneously used, has been investigated with a pilot test facility. The pilot test facility treats the combustion flue gases exhausted from a diesel engine that generates 240 kW of electrical power. Test results show that up to 80 % of NOx (NO and NO2) can be removed at 100 - $200^{\circ}C$. None of conventional De-NOx techniques works under such low temperature range. In addition to NOx. the Pilot test results show that soot can be simultaneously treated with the present non-thermal plasma technique. The present pilot test shows that the electrical power consumption to operate the non-thermal plasma reactor is equivalent to 3 - 4 % of the electrical power generated by the diesel engine.

Seismic Analysis of Horizontal-Type Multi-Stage Centrifugal Pump using Finite Element Method (유한요소법을 이용한 수평형 다단원심펌프의 내진해석)

  • 조진래;이홍우;김민정;하세윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.790-796
    • /
    • 2003
  • As a fluid machinery for piping liquid in the reactor cooling system, multi-stage centrifugal pump requires the structural dynamic stability against external dynamic excitation. This paper is concerned with the finite element analysis of its eigen behavior and seismic response to RRS(Required Response Spectrum) curves in the case of SSE (Safe Shutdown Earthquake). Through the finite element analysis, the major vibration characteristics of multi-stage centrifugal pump(MSCP) are investigated and seismic qualification based on the IEEE codes is executed. The numerical results show that the MSCP used in this study has enough seismic strength.

Antitumor Activity of Chitosan Oligosaccharides Produced in Ultrafiltration Membrane Reactor System

  • Jeon, You-Jin;Kim, Se-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.503-507
    • /
    • 2002
  • Chitosan oligosaccharides (COSs) were prepared and fractionated into three groups of COS [a high molecular weight COS (HMWCOS), medium molecular weight COS (LMWCOS), and low molecular weight COS (LMWCOS)] according to their molecular weight, using an ultrafiltration membrane enzymatic bioreactor designed earlier [8]. Antitumor activity of these COSs was then examined against Sarcoma 180 solid (S180) or Uterine cervix carcinoma No. 14 (Ul4) tumor cell-bearing mice. Among these COSs, MMWCOS with molecular weight range from 1.5 to 5.5 kDa effectively inhibited the growth of both tumor cells in the mice. In addition, the administration of MMWCOS resulted in increased thymus weight among lymphoid organs. The mice treated with MMWCOS showed improved survival rate and larger number of survivors after 40 days of feeding. The most effective of MMWCOS far antitumor activity in the S180- or U14-bearing mice was 20 mg/kg/day or more.

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.