DOI QR코드

DOI QR Code

Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery

  • Yang, Ji-Hyun (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Shin, Hee-Yong (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Ryu, Young-Jin (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
  • Received : 2018.03.30
  • Accepted : 2018.07.28
  • Published : 2018.12.25

Abstract

Hydrothermal liquefaction of Chlorella vulgaris feedstock containing 80% (w/w) water was conducted in a batch reactor as a function of temperature (300, 325 and $350^{\circ}C$) and reaction times (5, 10 and 30 min). The biocrude yield, elemental composition and higher heating value obtained for various reaction conditions helped to predict the optimum conditions for maximizing energy recovery. To optimize the recovery of inorganic nutrients, we further investigated the effect of reaction conditions on the ammonium ($NH_4{^+}$), phosphate ($PO_4{^{3-}}$), nitrate ($NO_3{^-}$) and nitrite ($NO_2{^-}$) concentrations in the aqueous phase. A maximum energy recovery of 78% was obtained at $350^{\circ}C$ and 5 min, with a high energy density of 34.3 MJ/kg and lower contents of oxygen. For the recovery of inorganic nutrients, shorter reaction times achieved higher phosphorus recovery, with maximum recovery being 53% at $350^{\circ}C$ and 5 min. Our results indicate that the reaction condition of $350^{\circ}C$ for 5 min was optimal for maximizing energy recovery with improved quality, at the same time achieving a high phosphorus recovery.

Keywords

Acknowledgement

Grant : Development of Marine Microalgal Biofuel Production Technology

Supported by : Ministry of Oceans and Fisheries

References

  1. British Petroleum, BP statistical review of world energy. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.
  2. G. Milleer, S. Spoolman, Environmental Science: Problems, Connections and Solutions, twelfth ed., Thomson Learning Inc., Califonia, 2008.
  3. N. Patel, J. Recent Res. Eng. Technol. 1 (2014).
  4. G.C. Dismukes, D. Carrieri, N. Bennette, G.M. Ananyev, M.C. Posewitz, Curr. Opin. Biotechnol. 19 (3) (2008) 235. https://doi.org/10.1016/j.copbio.2008.05.007
  5. P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer, BioEnergy Res. 1 (1) (2008) 20. https://doi.org/10.1007/s12155-008-9008-8
  6. S. John Pirt, New Phytol. 102 (1) (1986) 3. https://doi.org/10.1111/j.1469-8137.1986.tb00794.x
  7. A. Demirbas, M.F. Demirbas, Algae Energy: Algae as a New Source of Biodiesel, Springer, London, 2010.
  8. D.R. Georgianna, S.P. Mayfield, Nature 488 (7411) (2012) 329. https://doi.org/10.1038/nature11479
  9. L. Gouveia, Microalgae as a Feedstock for Biofuels, Springer, Berlin Heidelberg, 2011, pp. 1.
  10. X. Deng, Y. Li, X. Fei, Afr. J. Microbiol. Res. 3 (13) (2009) 1008.
  11. R. Harun, M.K. Danquah, G.M. Forde, J. Chem. Technol. Biotechnol. 85 (2010) 199.
  12. R.P. John, G.S. Anisha, K.M. Nampoothiri, A. Pandey, Bioresour. Technol. 102 (1) (2011) 186. https://doi.org/10.1016/j.biortech.2010.06.139
  13. X. Miao, Q. Wu, Bioresour. Technol. 97 (6) (2006) 841. https://doi.org/10.1016/j.biortech.2005.04.008
  14. E.A. Ehimen, Z.F. Sun, C.G. Carrington, Fuel 89 (3) (2010) 677. https://doi.org/10.1016/j.fuel.2009.10.011
  15. P. Hidalgo, C. Toro, R. Navia, Rev. Environ. Sci. Bio/Technol. 12 (2) (2013) 179. https://doi.org/10.1007/s11157-013-9308-0
  16. X. Miao, Q. Wu, C. Yang, J. Anal. Appl. Pyrolysis 71 (2) (2004) 855. https://doi.org/10.1016/j.jaap.2003.11.004
  17. A.E. Harman-Ware, T. Morgan, M. Wilson, M. Crocker, J. Zhang, K. Liu, S. Debolt, Renew. Energy 60 (2013) 625. https://doi.org/10.1016/j.renene.2013.06.016
  18. D.C. Elliott, T.R. Hart, A.J. Schmidt, G.G. Neuenschwander, L.J. Rotness, M.V. Olarte, J.E. Holladay, Algal Res. 2 (4) (2013) 445. https://doi.org/10.1016/j.algal.2013.08.005
  19. P.S. Christensen, G. Peng, F. Vogel, B.B. Iversen, Energy Fuels 28 (9) (2014) 5792. https://doi.org/10.1021/ef5012808
  20. U. Jena, et al., Biotechnol. Biofuels 8 (1) (2015) 167. https://doi.org/10.1186/s13068-015-0345-5
  21. Z. He, et al., Algal Res. 33 (2018) 8. https://doi.org/10.1016/j.algal.2018.04.013
  22. S. Liang, et al., Environ. Prog. Sustain. Energy 36 (3) (2017) 781. https://doi.org/10.1002/ep.12629
  23. G. Kumar, S. Shobana, W.H. Chen, Q.V. Bach, S.H. Kim, A.E. Atabani, J.S. Chang, Green Chem. 19 (1) (2017) 44. https://doi.org/10.1039/C6GC01937D
  24. Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun, J. Tong, Energy 35 (12) (2010) 5406. https://doi.org/10.1016/j.energy.2010.07.013
  25. S.S. Toor, L. Rosendahl, A. Rudolf, Energy 36 (5) (2011) 2328. https://doi.org/10.1016/j.energy.2011.03.013
  26. C. Tian, B. Li, Z. Liu, Y. Zhang, H. Lu, Renew. Sustain. Energy Rev. 38 (2014) 933-950. https://doi.org/10.1016/j.rser.2014.07.030
  27. P. Biller, A.B. Ross, S.C. Skill, A. Lea-Langton, B. Balasundaram, C. Hall, R. Riley, C. A. Llewellyn, Algal Res. 1 (1) (2012) 70. https://doi.org/10.1016/j.algal.2012.02.002
  28. J. Folch, M. Lees, G.H. Sloane-Stanley, J. Biol. Chem. 226 (1) (1957) 497.
  29. F. Mariotti, D. Tome, P.P. Mirand, Crit. Rev. Food Sci. Nutr. 48 (2) (2008) 177. https://doi.org/10.1080/10408390701279749
  30. C. Safi, M. Charton, O. Pignolet, F. Silvestre, C. Vaca-Garcia, P.Y. Pontalier, J. Appl. Phycol. 25 (2) (2013) 523. https://doi.org/10.1007/s10811-012-9886-1
  31. S.A. Channiwala, P.P. Parikh, Fuel 81 (8) (2002) 1051. https://doi.org/10.1016/S0016-2361(01)00131-4
  32. P.J. Valdez, M.C. Nelson, H.Y. Wang, X.N. Lin, P.E. Savage, Biomass Bioenergy 46 (2012) 317. https://doi.org/10.1016/j.biombioe.2012.08.009
  33. U. Jena, K.C. Das, J.R. Kastner, Bioresour. Technol. 102 (10) (2011) 6221. https://doi.org/10.1016/j.biortech.2011.02.057
  34. P. Biller, A.B. Ross, Bioresour. Technol. 102 (1) (2011) 215. https://doi.org/10.1016/j.biortech.2010.06.028
  35. B. Eboibi, D. Lewis, P. Ashman, S. Chinnasamy, Bioresour. Technol. 170 (2014) 20. https://doi.org/10.1016/j.biortech.2014.07.083
  36. G. Yu, Y. Zhang, L. Schideman, T. Funk, Z. Wang, Energy Environ. Sci. 4 (11) (2011) 4587. https://doi.org/10.1039/c1ee01541a
  37. D.R. Vardon, B.K. Sharma, J. Scott, G. Yu, Z. Wang, L. Schideman, et al., Bioresour. Technol. 102 (2011) 8295. https://doi.org/10.1016/j.biortech.2011.06.041
  38. K.C. Ruttenberg, Treatise Geochem. 8 (2003) 585.

Cited by

  1. The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction vol.235, pp.None, 2018, https://doi.org/10.1016/j.apenergy.2018.10.120
  2. Carbon dots derived from algae as H2O2 sensors: the importance of nutrients in biomass vol.1, pp.6, 2019, https://doi.org/10.1039/c9na00049f
  3. In-Situ Catalytic Fast Pyrolysis of Pinecone over HY Catalysts vol.9, pp.12, 2018, https://doi.org/10.3390/catal9121034
  4. Conversion of high-ash microalgae through hydrothermal liquefaction vol.4, pp.6, 2020, https://doi.org/10.1039/c9se01114e
  5. Reaction engineering and kinetics of algae conversion to biofuels and chemicals via pyrolysis and hydrothermal liquefaction vol.5, pp.8, 2018, https://doi.org/10.1039/d0re00084a
  6. Biocrude Production from Hydrothermal Liquefaction of Chlorella: Thermodynamic Modelling and Reactor Design vol.14, pp.20, 2021, https://doi.org/10.3390/en14206602
  7. Lignocellulosic and algal biomass for bio-crude production using hydrothermal liquefaction: Conversion techniques, mechanism and process conditions: A review vol.27, pp.1, 2018, https://doi.org/10.4491/eer.2020.555