• 제목/요약/키워드: many-valued logic

검색결과 18건 처리시간 0.023초

Strong Kleene-Diense Logic: a variant of the infinite-valued Kleene-Diense Logic

  • Yang, Eun-Suk
    • 논리연구
    • /
    • 제8권2호
    • /
    • pp.85-107
    • /
    • 2005
  • Kleene first investigated a three-valued system which follows the evaluations of the Lukasiewicz infinite-valued logic ${\L}C$ with respect to negation, conjunction, and disjunction, and treats $\rightarrow$ as material-like implication in the sense that A $\rightarrow$ B is defined as ${\sim}A{\vee}B$ in its evaluation. Diense and Rescher extended it to many-valued logic and infinite-valued logic, respectively. This paper investigates a variant of the infinite-valued Kleene-Diense logic KD, which we shall call strong Kleene-Diense logic (sKD): sKD has the same evaluations as KD except that sKD takes a variant of Kleene-Diense implication. Following the idea of Dunn [2], we provide algebraic completeness for sKD together with its deduction theorem.

  • PDF

Lotfi A. Zadeh

  • 이승온;김진태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.311-312
    • /
    • 2008
  • 퍼지 논리는 1965년 Zadeh[13]에 의하여 소개된 이후 꾸준히 확장, 발전하였다. 퍼지 논리와 관련된 수학사 및 수학교육 논문[1, 2, 3, 4, 5, 7]들이 많이 발표 되었지만 정작 퍼지 논리의 창시자인 Zadeh에 대한 연구 논문은 아직까지 나오지 않았다. 본 논문에서는 Zadeh의 생애와 업적을 알아보고 이를 통해 우리가 배워야 할 점들에 대해 논의한다. 또한 이가 논리, 다가 논리, 퍼지 논리, 직관주의 논리 및 직관적 퍼지 집합을 비교, 분석해보고 직관적 퍼지 집합에서 '직관적(intuitionistic)'이라는 용어의 부적절성에 대해 논의한다.

  • PDF

퍼지 논리의 시조 Zadeh (Lotfi A. Zadeh, the founder of fuzzy logic)

  • 이승온;김진태
    • 한국수학사학회지
    • /
    • 제21권1호
    • /
    • pp.29-44
    • /
    • 2008
  • 퍼지 논리는 1965년 Zadeh([13])에 의하여 소개된 이후 꾸준히 확장, 발전하였다. 퍼지 논리와 관련된 수학사 및 수학교육 논문([1], [2], [3], [4], [5], [7])들이 많이 발표되었지만 정작 퍼지 논리의 창시자인 Zadeh에 대한 연구 논문은 아직 발표되지 않았다. 본 논문에서는 Zadeh의 생애와 업적을 알아보고 이를 통해 우리가 배워야 할 점들에 대해 논의한다. 또한 이가 논리, 다가 논리, 퍼지 논리, 직관주의 논리 및 직관적 퍼지 집합을 비교, 분석하고 직관적 퍼지 집합에서 '직관적(intuitionistic)' 이라는 용어의 부적절성에 대해 논의한다.

  • PDF

${\L}C$, LC를 위한 루트리-마이어 의미론 : 실질 함의의 역설과 다치 함의의 대안적 특성들

  • 양은석
    • 논리연구
    • /
    • 제7권2호
    • /
    • pp.105-120
    • /
    • 2004
  • In this paper, we provide Routley-Meyer semantics for the many-valued logics ${\L}C$ and LC, and give completeness for each of them. This result shows the following two: 1) Routley-Meyer semantics is very powerful in the sense that it can be used as the semantics for several sorts of logics, i.e., many-valued logic, not merely relevance logic and substructural logic. Note that each implication of ${\L}C$ and LC does not (partially) result in "paradoxes of material implication" 2) This implies that Routley-Meyer semantics can be also used not merely for relevance systems but also for other logical systems such as ${\L}C$ and LC, each of which has its own implication by which we can overcome (partially) the problem of "paradoxes of material implication".

  • PDF

모서리값 확장 그래프를 사용한 함수구성에 관한연구 (A Study on the Constructing the Function using Extension Edge Valued Graph)

  • 박춘명
    • 한국정보통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.863-868
    • /
    • 2013
  • 본 논문에서는 최근의 디지털논리시스템의 함수구성시에 도입되고 있는 그래프이론에 바탕을 둔 새로운 형태의 데이터구조 형태인 모서리값 확장 그래프를 추출하는 알고리즘을 제안하였다. 이를 위해 수학적 배경으로는 리터럴 함수와 리드 뮬러 확장에 대해 논의하였으며, 본 논문의 근간인 모서리 확장 그래프의 도출에 대해 논의하였다. 또한, 모서리 확장 그래프로부터 임의의 m치 n변수의 축약된 함수구성을 도출하는 알고리즘을 제안하였으며 이를 예에 적용하여 그 타당성을 보였다. 제안된 알고리즘의 규칙성을 고려하여 동일부분을 모듈화함으로써 일반성을 가짐을 보였다.

다치 논리 함수 연산 알고리즘에 기초한 MOVAG 구성과 T-gate를 이용한 회로 설계에 관한 연구 (A Study on the Constructions MOVAGs based on Operation Algorithm for Multiple Valued Logic Function and Circuits Design using T-gate)

  • 윤병희;박수진;김흥수
    • 전기전자학회논문지
    • /
    • 제8권1호
    • /
    • pp.22-32
    • /
    • 2004
  • 본 논문에서는 Honghai Jiang에 의해 제안된 OVAG(Output value array graphs)를 기초로 MOVAG(Multi output value array graphs)를 이용한 다치논리함수의 구성방법을 제안하였다. D.M.Miller에 의해 제안된 MDD(Multiple-valued Decision Diagram)는 주어진 다변수의 함수에서 회로 설계까지 많은 처리시간과 노력이 요구되므로 본 논문에서는 MDD의 단점을 보완하여 데이터 처리시간의 단축과 적은 복잡도를 갖도록 MOVAG를 설계하였다. 또한 MOVAG의 구성 알고리즘과 입력행렬선정 알고리즘을 제안하고 T-gate를 사용하여 다치 논리 회로를 설계, 모의 실험을 통해 그 결과를 검증하였다.

  • PDF

전류방식 CMOS에 의한 ROM 형의 다치 논리 회로 설계 (Design of Multiple Valued Logic Circuits with ROM Type using Current Mode CMOS)

  • 최재석;성현경
    • 전자공학회논문지B
    • /
    • 제31B권4호
    • /
    • pp.55-61
    • /
    • 1994
  • The multiple valued logic(MVL) circuit with ROM type using current mode CMOS is presented in this paper. This circuit is composed of the multiple valued-to-binary(MV/B) decoder and the selection circuit. The MV/B decoder decodes the single input multiple valued signal to N binary signal, and the selection circuits is composed N$\times$N array of the selecion cells with ROM types. The selection cell is realized with the current mirror circuits and the inhibit circuits. The presented circuit is suitable for designing the circuit of MVL functions with independent variables, and reduces the number of selection cells for designing the circuit of symmetric MVL functions as many as {($N^2$-N)/2}+N. This circuit possess features of simplicity. expansibility for array and regularity, modularity for the wire routing. Also, it is suitable for VLSI implementation.

  • PDF

MANY VALUED LOGIC AND INTUITIONISTIC FUZZY SETS: A STONE THEOREM GENERALIZATION

  • AMROUNE, ABDELAZIZ;DAVVAZ, BIJAN
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.269-279
    • /
    • 2015
  • Atanassov introduced another fuzzy object, called intu- itionistic fuzzy set as a generalization of the concept of fuzzy subset. The aim of this paper is the elaboration of a representation theory of involutive interval-valued Łukasiewicz-Moisil algebras by using the notion of intuitionistic fuzzy sets.

Some Common Fixed Point Theorems using Compatible Maps in Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.108-112
    • /
    • 2011
  • Kaneko et a1.[4] etc many authors extended with multi-valued maps for the notion of compatible maps in complete metric space. Recently, O'Regan et a1.[5] presented fixed point and homotopy results for compatible single-valued maps on complete metric spaces. In this paper, we will establish some common fixed point theorems using compatible maps in intuitionistic fuzzy metric space.