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Abstract

Recently, many types of set-valued fuzzy integrals are studied by many authors. In this paper, we consider various types of
convergence theorems of Choquet integrals of interval-valued function with respect to an autocontinuous fuzzy measure.

Key Words : Fuzzy measure, Choquet integral, autocontinuity

1. Introduction

It is well known that set-valued functions have been used
repeatedly in Economics. Set-valued functions and their in-
tegration have been studied by many authors{2, 7-10, 17].
Recently, Jang et al. [10] considered a convergence theorem
for inter-valued Choquet integrals under very restrictive
condition. In this paper, we consider various types of con-
vergence theorems of Choquet integrals of inter-valued func-
tion with respect to an autocontinuous fuzzy measure under
very mild conditions. We also prove the result of Jang et
al.[10] under simple condition.

2. Preliminaries

Definition 2.1 [9, 13] (1) A fuzzy measure on a measurable

space  (X,J) is an extended real-valued function
w7 — [0, oo] satisfying
() w(@)=0

(7)) p(A) < p(B), whenever A, B€ 7, A CB.

(2) A fuzzy measure  is said to be autocontinuous from
above [resp.,below] if n(AUB,) — u(A)

[resp., u(A~B,) — u(A)]

whenever Ae 7, {B,JC7 and u(B,)—0.

(3) If 4 is autocontinuous both from above and from below,
it is said to be autocontinuous.

Recall that a function #:X —[(, o] is said to be meas-
urable if {x | Ax)>a}le7 for all ge(—co, ).

Definition 2.2 [13] (1) A sequence {f,} of measurable func-
tions is said to converge to # in measure, in symbols
f, —u fif for every &30,

}ILHJO#( {x | 1{(F,(x) = AxHt>e}) =0.
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(2) A sequence {f,} of measurable functions is said to con-
verge to f in distribution, in symbols f, —, 7 if for every

>0

im x.(n = pln) ec.,

where  n{») = p({x| Ax)>r}) and "ec! stands for

"except at most countably many values of "

Definition 2.3 [11-12] (1) The Choquet integral of a meas-
urable function s with respect to a fuzzy measure 4 is de-
fined by

O [Fdu = [ ufnar,

where the integral on the right-hand side is an ordinary one.
(2) A measurable function f is called integrable if the
Choquet integral of 7 can be defined and its value is finite.

Throughout this paper, R* will denote the interval [(), o),
KRY)={[a, blla, b= R' and a<#}. Then an element in
I(R™) is called an interval number. On the interval number
set, we define for each pair [g4,5],[c, dJe(R)and ke R™,
[a, Bl+[c, dl=[a+tc, b+dl,

la, 8] -l¢, dl=la-c, b-d,

ka, bl=I[ka, kb]

[a, bl<(c, dl if and only if 2 < c and b < d.
Then
Hausdorff metric defined by

(KR"),dy) is a metric space, where 4, is the

dy (A, B)

= max { sup ,eq inf eplx—3, sup ,ep inf cxlc— )}

for all A, BeJR'). By the definition of the Hausdorff
metric, we have immediately the following proposition.

Proposition 2.4 For each pair

[a,bl, [c.dlel(RY),
dila, 8], lc, d])=max{la—d, |b—d}.



Let C(R') be the class of closed subsets of pR*T.
Throughout this paper, we consider a closed set-valued func-

tion F: X—C(RT)\{®} and an interval number-valued
function

F: X— IR )\ o} We denote that g, — limA,=A
if and only if
lim dy (A,, A)=0 , where A=/(R") and

{A,})CKRT).

Definition 2.5 [1 ,6, 7] A closed set-valued function F is
said to be measurable if for each open set O CR*t,

F ' O)={x €X| Fx)NO #+ 0}e7T

Definition 2.6 [1] Let F be a closed set-valued function. a
measurable function f: X — R™ satisfying Ax)e F(x) for
all yeX is call a measurable selection of F.

f: X— RY isin Ll(y if and only if £ is

€] ff dp<oo. We note that "

We say

measurable  and

"

x €X py—q.e. " stands for
The property p(x) holds for x €X y—g.e. means that
there is a measurable set A such that 4(A)=0 and the
property p(x) holds for all x =Ac¢ where A€ is the com-
plement of A

x =X pu—almost everywhere".

Definition 2.7 [6, 7] (1) Let F be a closed set-valued func-

tion and A=A . The Choquet integral of F on 4 is de-

fined by
O [ Fau=00) [ faul 1 es(P),

where S (F) is the family of 4 — 4., . Choquet integrable

selection of F, that is,

Sc(F)={f eLyu) | Ax) €F(x), x €X u—a.c.}.
(2) A closed set-valued function F is said to be Choquet in-
tegrable if (C) dep +0,

(3) A closed set-valued function F is said to be Choquet in-
tegrably bounded if there is a function geL!(y) such that

IF0II= sup, cpnli<glx) for all x €X.

Instead of () fX Fodp , we will write (C)f F du.

Recall that a measurable closed set-valued function is said
to e convex-valued if F(x) is convex for all y=X and that
a set A is an interval number if and only if it is closed and
convex.

Theorem 2.8 [9] If F is a measurable closed set-valued func-
tion and Choquet integrably bounded and

f(x)=sup{rre F(x)} and f,(x)=inf {r |» €F(x)} for all
x€X , then fand f, are Choquet integrable selection of F.

if we define

Convergence of Interval-valued Choguet integrals

3. Convergence of interval-valued Choquet
integral

In this section, we consider Fatou's lemma, the Lebesgue
convergence theorem, monotone convergence theorem and uni-
form integrability related convergence theorem. We begin with
the concept of convergence of a sequence of elements in

KR™).

Let {A,JCKR™) be a sequence. We define
limsupA,={x| x = }erE}ox we X €A, n21}
and

liminfA,={x | x =limx,, x, €A,, #n>1}

If limsupA,= liminfA,=A , we say that {A,} is con-
vergent to A4, and it s
limA,=A or A,—A..

simply  written as

We note that if then

dH_ lim An:A-

limA,=A and A=[g,5]

Lemma 3.1 If {F } is a sequence of interval-valued Choquet
integrably bounded functions, then

(1) lim sup(C)fF,I du

=[1iminf(C) [ f,, du, limsup(C) [ £, dul,
(D lim inf(C) [ Fdu

=[lim sup(C) f fuy dit, liminf(C)ffn*d#],

Proof. Let y < limsup( C)fF . du. Then we have that
y= Ll_.ngoy " and

Yau e(C)fF,, due, n=1. So

Ya = (O ff,,k dy — y as k—co where

fmeSc(Fm). Since | Fr ) < fl) < £, (%)
for all xeX,

(O [Fr du < (O [frdu < (O [ £, dn,
and hence
y €lliminf(C) [ £,, du, limsup(C) [ £," dul.

Conversely, if y ¢ liminf(Q) f f,- du, then for some

>0, N>O
n=N, y< (C)ffn‘ dy— g- Then clearly

small there exist such that for any

y elimsup(C)fF"dﬂ, Similarly, if
v 1imsup(C)ff”* du , we can easily prove that

vy & limsup( C)fF” du, which completes (1). The proof of

(2) is similar.
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Theorem 3.2 (Fatou's lemma) Let 4 be finite and

autocontinuous. Let {F,} be a sequence of interval-valued

measurable functions. If there exist Choquet integrable func-
tions G and H such that G<F,<H for all 4,

lim sup(C) fF,,d/z c (O f limsupF,du.

Proof. It is easy to check that ((O) f lim supF,d

=[(0) [liminf £,, dx, () [limsup f," du]. Hence by
Lemma 3.1 and Fatou's lemma( Theorem 3.2 [6], Corollary
3.3 [6] ), noting that inf ,.,7, —p liminf f, and
SUp s .f% —p limsup f, by the assumption that

nite and autocontinuous., we get the result.
Noting that

(O [lim inf F, dp
=[O [timsup 7, de, (O) [liminf 7, dul,

we similarly have the following result.

17 be fi-

Theorem 3.3 (Fatou's lemma) Let 5 be finite and
autocontinuous. If there exist Choquet integrable functions @G
and H such that

G<F,<H for all 5,
(O [liminf F, d Climinf(C) [ F, du,

We next consider Dominate

Theorem.

Lebesgue Convergence

Theorem 3.4 If {F,} is a sequence of interval-valued meas-

Fuo =0t and f,"—, 7 and if
G and H are Choquet integrably bounded such that
G < F,< H for all y, then

urable function such that

lim(C) [F, dx =(C) [F du
Proof. By Theorem 3.2 [13], We have
m(C) [ £, du= [/, dp and Gm(C) [ f,"du= [ Fde.
Hence by Lemma 3.1,
limsup(C) [ F, du = kiminf(C) [ F, dy

=[O [Fudp, (O [F du]

which means 1im(C) [ F, du =(C) [ F du.

Note. If Sup ;ex dH(F,, (x),F(x)) — 0, as
n — oo then we easily see that
f, —pfoand f,° —,f. Hence Theorem 3.5 of Jang et

al. [10] is an easy consequence of Theorem 3.4.

Definition 3.5 A sequence interval-valued {F ,} is uniformly
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integrable if { | 7 | } is uniformly integrable, i.e. ,

lim sup n(c)f“Fn”l e dn=0.

Theorem 3.6 Let , be finite and let be a sequence of inter-
val-valued uniformly integrable measurable functions such that

f,,' —pfe and fn* —=p [

Them we have
1im(C) [ F, de=(0) [ F du.

Proof. Since ({F,} is both

{f,} and {f;} are uniformly integrable. Then by Theorem
3.4 [6], we have

uniformly  integrable,

lm(C) [ £, due =(O) [ £, du

and

lim (O) [ £, du=(0) [ fdu.

Hence by Lemma 3.1, the result follows.
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