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[Abstract] Kleene first investigated a three-valued system which follows the
evaluations of the kukasiewicz infinite-valued logic LC with respect to negation,
conjunction, and disjunction, and treats — as material-like implication in the
sense that A — B is defined as ~AVB in its evaluation. Diense and Rescher
extended i to many-valued logic and infinite-valued logic, respectively. This
paper investigates a variant of the infinite-valued Kleene-Diense logic KD, which
we shall call strong Kleene-Diense logic {sKD): sKD has the same evaluations
as KD except that skD takes a variant of Kleene-Diense implication. Following
the idea of Dunn {2, we provide algebraic completeness for skKD together with
its deduction theorem. '
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1. Introduction

Kleene [7] first introduced a three-valued system, which
follows the evaluation (1) below with respect to implication and
those of the Lukasiewicz infinite-valued logic LC with respect to
negation, conjunction, and disjunction. Diense [1] extended it as
many-valued system, and Rescher [11] as infinite-valued one.
Let us consider this logic as infinite one, and call it
Kleene-Diense Logic KDV KD is interesting in the sense that

* This work was supported by the Korea Research Foundation Grant
KRF-2004-075-A00009.

1) By S7x, Rescher expressed this logic. But we call it KD in
honor of Kleene and Diense who first gave the idea of it as
many-valued logic.
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it treats — as material-like implication. Note that A — B is
defined as ~AVB in its evaluation (see (1)). Thus KD can be
thought of as a natural many-valued extension of the Classical
Propositional Logic (CPL).

Let an evaluation be a function v: PA — {0, 1] (PA: set of
propositional variables, [0, 1]: the rationals between 0 and 1). KD

follows the evaluation
(1) v(A — B) = max(1 - v(A), v(B)).

As we mentioned above, this idea was in fact suggested by
Rescher [11], However, as he stated in it, this logic does have
no tautologies in case it has the sole designated value 1, the
greatest element, and in case it has as designated all the
elements except for the least element 0, the tautologies of CPL
are those of KD, and vice versa. Thus, with respect to the
second case KD is not interesting in the sense that it collapses
into CPL just by taking axioms and rules for CPL as those for
KD.

Now let us instead consider a variant of (1) as follows:

2) v(A—-B) =1 if v(A) < v(B);
max(1l - v(A), v(B)) otherwise.

And take as designated the greatest. We call an implication
satisfying (2) strong Kleene-Dienes implication (sKDI), and the
KD with sKDI (in place of (1)) strong Kleene-Diense Logic
(sKD). Note that under the value-range [0,1] above, as
designated sKD has the greatest 1.2
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Dunn (2] showed that the relevance logic R-mingle (RM) is
pretabular in the sense that while it does not itself have a finite
characteristic matrix, any normal extension of it does, and he
gave algebraic completeness for RM and its normal extensions.
He and Meyer [4] also showed the pretabularity of the
Dummett's infinite-valued logic LC, obtained from the
iﬁtuitionistic propositional logic H of Heyting by adding to H the
AlO0 below as an axiom scheme, and they gave algebraic
completeness for LC and its normal extensions.

In connection with RM and LC above, sKD is interesting in
the sense that it may be regarded as the contractionless LC
with respect to positive part of it, and moreover as relevant
because with respect to negation ~ (together with conjunction
A and disjunction V) the principles the "absurdity” ("from any
proposition of the form A A ~A any proposition whatever can
be deduced”) and the “triviality” ("from any proposition whatever
there can be deduced any proposition of the form A vV ~A"),

2) KD can be regarded as a system, which has as non-logical constants

vague sentences we can assign degrees of truth (and falsity) as
evaluations to them, but still has as logical constant material-like
(but not exactly material) implication in the sense that like material
implication its implication is defined by negation and disjunction, ie.,
A — B = ~A V B, (see (1)). As a neighbor of KD, we can think
of sKD as a system still having material-like implication but
strengthened in the sense that whenever degree of truth of the
evaluation of consequent is greater than that of antecedent, we
regard degree of truth of the evaluation of implication as absolutely
true {see (2)).
While each definition of KD implication and sKD implication is very
analogous to that of material implication of CPL, surprisingly each
implication is very different from material implication in the sense
that each implication of the former does not result in 'paradoxes of
material implication’.
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which give the ’'paradoxes of (material) implication’ and thus
irrelevance between premises and conclusion, are not valid in it.
Thus, sKD may be thought of in some sense either as a
relevant contractionless LC or as a relevance system with a
variant of the intuitionistic implication.

However, sKD is not satisfactory as a relevance logic because
it has still "positive paradox”. Note that in case a formula A is
a theorem in sKD, B — A is also a theorem and so the latter
gives an irrelevance between the antecedent B and the
consequent A. Hence, we had better think of sKD as a minimal
relevance system by regarding the condition that both the
absurdity and the triviality do not hold in a system L as the
minimal condition for relevance between premises (or
antecedent) and conclusion (or consequent) in L.

(Note that sKD may be also (partially) paraconsistent in the
(weak) sense that the above absurdity is not either valid in sKD
(see Remark 4 in section 5.2).)

In this paper we first give algebraic completeness for sKD.
Note that sKD omits the contraction (W). Thus, the
"self-distribution”, which principle is very important in the
deduction for LC (as well as CPL and H), is not valid in sKD.
Hence, it seems to us that sKD must have a deduction different
from LC. Next, we give a deduction theorem for sKD.

We note that with the help of Dunn’s (and Meyer's) algebraic
completeness for RM (and LC), we give the completeness for
sKD. Also, for convenience, we adapt ideas from their proofs in

(2], [4].
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2. Strong Kleene-Dienes algebras

To prove algebraic completeness for sKD, we should discover
an algebra whose class will characterize it. We shall call that
algebra a strong Kleene-Dienes algebra, which depends on a
bounded de Morgan (b~-DM) lattice and a variant of Henle
algebra. For convenience, we shall also adopt the notation,
interpretation, and results related with the algebras that are
found in [3], [4], [9], [10], and assume familiarity with them.

We first define a strong Kleene-Dienes (skd) algebra to be a

structure (A, T, L, ~, A, V, =) where (A, T, L, ~, A, V)
is a b-DM lattice, ie, (A, A, V) is a distributive lattice with
the greatest element T and the least 1, and ~ is a unary

operation on A which is an involution:

(3) ~~a = a
(4) ~(a V b) = ~a A ~b,

(A, T, L, =) is a variant of Henle algebra as follows: (in any
partially ordered set (A, <) with the greatest element T and

the least one .1.)

(lska) @ — b = T if and only if (iff) a < b
max(T - a, b) otherwise,

and ~ is the precomplement in the sense that
(5) ~a=a— L.

We shall call the condition () strong Kleene-Dienes
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implication and its algebra (A, T, 1, —) a strong
Kleene-Dienes implication (skdi) algebra. An skd algebra is a
b-DM lattice satisfying (isa) and

®6) @a—b)VvV(b—a =T,
called “prelinearity axiom” by Hajek [6]. An skd algebra is

linearly ordered if the ordering -of its algebra is linear, ie, a <
b or b < a (equivalently, a A b =aora A b =b) for each

pair a, b.

Since T is the dual of L, ie, T = ~L1, join V can be
defined by using — and meet A (see dfl below), and ~ by —
and L (see df2 below), an skd algebra (A, T, L, ~, A, V, —)

may be abbreviated to (A, L, A, —).

3. Tables, axiom schemes, and rules for sKD

For convenience, we present only the tables for evaluation, the
axiom schemes, and the rules of inference for sKD. We shall
use the biconditional <>, where A < B = (A — B) A (B — A),
and the falsity f. For the remainder we shall follow the
customary notation and terminology. We use the axiom systems
to provide a consequence relation. '

An evaluation for sKD is a function v: PV — {-®, == , -n, -n
+1, - ,0 1 -, n -1 n, ', o} that is extended to all
well-formed formulas of L(~, —, A, V, po, p1, -*) by the
following tables: (PV: set of propositional variables, {-®, «:+ , —-n,
-n+1 -,01 - ,n-1,n, -, -0} set of integers with -®
and o)
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TABLES
Tl v(~A) = o if v(A) = -
-0 if v(A) = o
0 if v(A) =0
-n (or n) if v(A) = n (or -n),
T2. v(A - B) = o if v(A) < v(B);
max (v(~A), v(B)) otherwise,
T3. v(A A B) = min (v(A), v(B)),
T4. v(A V B) = max (v(A), v(B)).

AXIOM SCHEMES

Al. A — A (self-implication)

A2. (A — B) — ((C = A) — (C — B)) (prefixing)

A3 (A—-> B —>C) — B —>(A—C) (permutation)

A4 A — (B — A) (positive paradox)

A5 (A AB — A (AAB —B (A-elimination)

A6. ((A— B A (A—C) — (A~ (B A Q0) (A-introduction)
A7. A—> (A vV B), B— (A V B) (V-introduction)

A8 ((A—-C) A B—C)— (A V B) — C) (V-elimination)
A9 AANBVQO)—-(AAB V(AAQ) (distrbutive law)
Al0.(A — B) vV (B— A) (chain)

All.~~A < A (double negation)

Al12(A — ~B) — (B — ~A) (contraposition)

Al3.(~A V B) » (A — B)

Al4(A — B) V ((A —B) = (~A V B))

AlI5(A - (A — ~A)) > (A — ~A) (special contraction)

RULES
A > B, A+ B (modus ponens (MP))
A B+ A A B (adjunction (AD))
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DEFINITIONS
dfl. AV B:=((A—>B) —B) A {(B—>A —A)
af2. ~A = A - f

Note that by dfl and df2, we may concern ourselves with —,
A, and f as propositional connectives for sKD. Thus T1 and T4
are redundant. Note that A can not be defined as A A B = A
& (A — B) and thus the axiom (A & (A —- B)) - (B & B —
A)) of BL (the basic logic for residuated fuzzy logics) in [5], [6]
is not valid in it. However, we can obtain in place of it (A A
B) - (B A A) as a theorem of sKD. Note also that "~", "A”,
and "V” are used ambiguously as propositional connectives and
as algebraic operators, but context should make their meaning
clear.

4. sKD algebras and KDs algebras

To prove algebraic completeness for sKD, we need to consider
algebras, more exactly matrices as algebras with designated
element(s). The algebras which we shall consider will be ordered
sextuples M = (A, T, ~, A, V, —), where A is a non-empty
set of elements, T is the greatest element as designated, ~ is
unary operation on A interpreting the negation sign ~, and A,
Vv, and — are binary operations on A interpreting the signs of
conjunction (A), disjunction (V), and . implication (-),
respectively. In addition, we shall use the binary operation <,
where a & b = (a = b) A (b — a) interpreting the sign of
coimplication (<), which we regard as a definitional abbreviation
in the usual way.

Note that we can get L, the least element, as the dual of T,
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and vice versa, and that ~ can be defined by — and L (see
df2), and V by — and A (see dfl). Thus in considering (sKD)
algebras, we need only concern ourselves with —, A, and ...

We employ the customary algebra notions, e.g., subalgebra,
evaluation, validity, without special definition. We shall call an
algebra in which all of the theorems of sKD are valid an sKD
algebra. By a normal algebra, we mean one in which for all
elements a and b,

Daeob=Tiffa=Dhb
(i) a,a—b=Tonlyif b= T; and
(i) a, b= Tonlyifa ANb= T,

It is easy to verify, by inspection of the axiom schemes of
sKD), that a normal sKD algebra is a de Morgan (DM) lattice
with A, V, and ~, and that for elements a, b, a < biff a »> b
= T. Also, it follows from (ii) and (iii) for normality that the
set of designated element D, = {T}, is a filter. In the sequel, we
shall regard normal sKD algebras as DM lattices in this way
without special comment.

Certain normal sKD algebras will be especially important. We
consider an algebra (among sKD algebras) which we shall call
KD’,, whose elements are the integers with —® and ®, which are
least and greatest elements, whose designated element is the o,
and whose operations ~, —, A, and V are defined as the above
~, =, N, and V tables, respectively; by KDSR; the subalgebra
of KD% whose set is {-®o, -n/2, -n/2 + 1, =, -1, 1, =+ , n/2 -
1, n/2, ®} if n is even and {-®, -n+1/2, -n+1/2 + 1, -, -1, 0, 1,

-, n-1/2 - 1, n-1/2, o} if n is odd, each with n + 2 elements.
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We take KD®% to consist of just - and ®. We exclude the
degenerate one element algebra.

Generalizing, by a KIF algebra, we shall mean any algebra
whose elements form a chain with least and greatest elements,
and whose operations are defined in an analogous way. All KD®
algebras are normal sKD algebras. (Note that it can be easily
proved that A is a theorem of sKD only if A is valid in KD%,

i.e., soundness.)

5. Algebraic completeness for sKD

5.1 Filters in sKD algebras

Let M be a normal KD° algebra. A filter on M is a
non—empty set F € M such that for each x, y € M,

FI) x € Fandy € Fimply x A v € F,
F)xeEeFandx <ylorx—y < F) implyy € F.

F is a prime filter iff for each pair of elements x, y (€ M)
such that x V y € F,

PFH)xeEFory € F

Where M is a normal KD°® algebra and F is a filter of M
such that D < F, then if for elements a and b we define a = b
iff a <> b € F, then = is a congruence relation on M with
respect to F, 1.e, = is an equvalence relation, and if a = b and
¢ = d, then
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i) aEe Fiff b € F;
(il)a Ac=Db A d and
(fii) a—c =b—d

These properties of = are obtainable from the definition of
normality together with easily accessible theorems of sKD. Note
that in establishing the transitivity of = and also in establishing
(1), it is useful to use (F2), which principle rests upon the fact
that A — ((A — B) — B) is a theorem of sKD.

For a normal (skd) algebra M and such a filter F we can
define the quotient algebra (modulo F) M/F as follows: the
elements of M/F consist of the equivalence classes lal of all
elements of b of M such that b = a; the designated element(s)
of M/F consist(s) of all lal such that a (= T) € F; and
operations and special elements are defined representative-wise
on the equivalence classes, so that ~lal = |~al, lal A bl = |a
A bl lal vV bl = la Vv bl, lal = bl = la — bl, Itl = T, and [f|
=13

Note that we need not concern ourselves with ~lal = |~al
and lal V |bl = la V bl because ~ and V can be defined by
—, f, and A, (Since t = ~f and ~ and V can be defined by
-, f, and A, we need only concern ourselves with —, f, and A
with respect to equivalence classes.) Then, it is obvious that

3) It can be ensured that this definition is correct due to (the definition
of sKD algebras and) the provabilities as follows (we just need to
check that <> is a congruence with respect to A and — we check
just one direction. Let -~ A — B. With respect to A, by A5 and
transitivity, (A A C) — B, and thus (A A C) — (B A C) by Ab,
A6, AD, and MP; with respect to —», by transitivity, it is almost
immediate that (B — C) — (A — () and (C — A) — (C — B).
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Proposition 1 If M is a normal sKD algebra and F is a filter
of M, then M/F is a normal sKD algebra and is a homomorphic
image of M under the natural homomorphism, h(a) = lal.

Proposition 2 Let M and F be as in Proposition 1, and yet F
be prime. Then M/F is a KD® algebra.

Proof That M/F is a chain follows from the algebraic
consideration of the axiom scheme Al0 of sKD and the
primeness of F. For the operations, which are defined as on a
KD® algebra, the axiom schemes A5 to A9, All, and AlZ ensure
that A, V, and ~ satisfy DM lattice properties, ie., each of
them is as on a KD® algebra. Al4 together with the theorems of
skKD (7) (A = B) - (A — B) < 1), @) (A~ B) — (~A V
B) - ((A — B) « (~A V B)) ensures that — is as on a
KD® algebra. Thus M/F is a KD® algebra.

We check as an example —. We first note that for each a €
M,as Fiffa= T inF ie {al =17, and that {¥x) a > b €
F iff lal < |bl. (cf. see the proof of Lemma 2.3.12 in {6]). Then,
the axiom scheme Al4 ensures that — is all right:

Since F is prime, either a — b & F or (a — b) — (~a V b)
& F. First, let a—> b (= T) € F. Then la — bl (= |TD by
(), and thus lal — Ibl = |T| by Proposition 1. Next, let a —> b
(# T) & F. Then by primeness, (a = b) — (~a V b) € F.
Then, by (*) la — bl = |~a Vv bl Since by algebraic
consideration of A13 (~a V b) — (a = b) = T in F, and thus
j~a V bl < la — bl. Hence la — bl = |~a V bl, as it should.
O
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Proposition 3 Let M, F be as in Proposition 1. Then if a is an
element of M such that a # T, there exists a homomorphism h
of M onto a KD® algebra such that hia) = T.

Proof By Propositions 1, 2, and the Stone Prime Filter
Separation Theorem. []

Remark 1 As Dunn’s (and Meyer’'s) consideration in [2], [4],
our proofs of Propositions 1 to 3 may be regarded as
generalizations of Stone’s work.

Remark 2 By a construction used by Stone, from Proposition 3
it follows that every normal sKD algebra is isomorphic to a
subdirect product of KD® algebras. Since KD% is the only KD*
algebra that is a Boolean algebra (excluding the degenerate one
element - algebra), this may be also regarded as another

generalization of embedding theorem of Stone's for Boolean
algebras.

Proposition 4 Let KD%, KD%, KD%, ‘- be the sequence of KD®
algebras. If a sentence A is valid in KD% then A is valid in
KD%, for all j < i, such that if i is odd, then j is any
non-negative integer (< 1), and that 1 is even only if j is even.

Proof Since each KD is a subalgebra of KD, it is immediate. [
Note that when i is even, KD% will include a valid sentence A

that is not valid in any odd-valued KD% j < i. This may be
shown by considering (9) (~(A < ) A ~(A < ~f)) — (A
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— ~A) < f) which is valid in every even-valued KD%, but not
in KD} (and thus not in any odd-valued KD%). This implies
that every valid sentence in KD% must be valid in KD% - 0
obtained from KD®% by deleting O from the elements of KD%, ie.,
KD®% excluding O, but there will be valid sentences in KD% - 0
that are not in KD®%. Note that it implies that while each RM
and LC is pretabular in the sense that any normal extension of
it has a finite characteristic algebra (see [2], [4]), sKD is not
because some normal extension of it may have an infinite

characteristic algebra KD% - 0 (see section 5.2).

5.2 Completeness for sKD

To achieve the completeness for sKD, first, we define the
Lindenbaum algebra of sKD. Our work is parallel to that of
Dunn (and Meyer) in [2], [4]. We can construct a normal
characteristic algebra for sKD (A(sKD)) as follows: for
sentences P and Q, we define P = Q iff P < Q is a theorem
of sKD; the elements of A(sKD) consist of the equivalence
classes [P], where [P] is the set of all sentences of Q such that
Q = P; operations are defined representative-wise on the
equivalence classes, so that ~[P] = [~P], [P1 A [Q] = [P A
QL I[Pl VIQ =[P Vv Q] [Pl = [Q] = [P — QI and [t] and
[f] are greatest and least elements, respectively. (Note that the
greatest element as designated consists of all [P] such that P is
a theorem of sKD. Note also that we need only concern our
selves with A, —, and f (see dfl and df2).)

This definition parallels the definition of a quotient algebra in

section 5.1, and thus we can convince that this is a well-defined
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algebra because of the same theorems of sKD that justified the
definition of the quotient algebra. Let us call this algebra the
normal Lindenbaum algebra for sKD A(sKD), since evidently
A(sKD) is a normal sKD algebra, and in fact is characteristic
for sKD since any non-theorem A may be falsified under the
canonical evaluation v, which sends every sentence B to [B].

We shall call a propositional calculus X an extension of sKD
iff X has the same sentences as sKD and every theorem of sKD
is a theorem of X, an extension X proper iff X does not have
exactly same theorems as sKD; and an extension X normal iff
X is closed under rules of sKD. Where X is an extension of
sKD, by an X-algebra we mean an algebra in which all of the
theorems of X are valid. Where X is a normal extension of sKD,
the Lindenbaum construction above can be modified by defining
P = Qiff P« Q is a theorem of X, thereby producing the
normal Lindenbaum algebra for X (A()).

By these definitions, we can give completeness for sKD. To
do this, we mimic Theorems 6 to 10 in [2] and Theorems 5, 6
in [4]. Where X is a propositional calculus and V is a set of
propositional varables, let X/V be that propositional calculus like
X except that its sentences contain no propositional variables
other than those in V. Then, it is obvious that

Proposition 5 Let X be a normal extension of sKD. Then
AX/V) is a normal X-algebra and is characteristic for X/V,
since any non-theorem may be falsified under the canonical

evaluation v. that sends every sentence A to [Al

The hard part of the (weak) completeness result for sKD is
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showing that if a sentence A is not a theorem, then there is
some KD® algebra KD%, such that A is not valid in KD%. This
is contained in the following theorem, but generalized to
arbitrary normal extensions of sKD, follows from Propositions 5
and 3.

Proposition 6 Let X be a normal extension of sKD. Then if a
sentence A is not a theorem of X, then there exists some KD®
X-algebra KD°® such that A is not valid in KD®.

Proof Let A be not a theorem of X. Then by Proposition 5, A
is falsifiable in the normal X-algebra A(X/V) by the canonical
evaluation v.. But since [A] = [t], ie, the greatest T, in
A(X/V), then by Proposition 3 there is a homomorphism h of
A(X/V) onto a KD® algebra KD® such that KD® is an X-algebra
and h([A]) = T in KD® Then the composition h and v¢, h °
ve{lA) = h([A]), is an evaluation which falsifies A in KD°. Let
this be the evaluation v such that v(A) = h([A]). Since KD’ is a
KD® algebra and h([A]) = T in KD°, we may falsify A in KD®
by the evaluation v(B) = h([BD). Since every KD° algebra is
normal, it only remains to observe that KD® is an X-algebra
since it is a homomorphic image of A(X/V), which is an
X-algebra. It is true by a general theorem of Los’s in [8]. []

Note that in Proposition 6 the KD® algebra KD® need not be
finite. We can consider the case that KD® is finite as follows:
where there are only finitely many n propositional variables, let
V" be their set V and let A(X/V") be that subalgebra of
A(X/V) generated by elements, ie., [pi, - , [pn), corresponding
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to propositional variables p, , Dn. Let us suppose that a
sentence A, in which n propositional variables occur, is not a
theorem of some normal extension X of sKD. Then, by
Proposition 5, A(X/V") is a normal X-algebra. Since [A] = [t]
in A(X/V"), by almost the same argument as for Proposition 6,
we may falsify A in some KD° X-algebra KD® that is a
homomorphic image of A(X/V") under some homomorphism h.
Clearly, KD® is generated by h([pil), - , h{[p.)). But it is
obvious that every finitely generated KD° algebra KD is finite,
and that if KD® has n generators, then KD® has at most 2n+2
elements. It is also obvious that every finite KD® algebra
containing at least two elements, the greatest and the least, is
isomorphic to some KD®%. Hence, KD® is isomorphic to some
KD%. So we have

Proposition 7 Let X be a normal extension of sKD. Then if A
is a sentence containing n propositional variables and A is not a
theorem of X, then there exists some KD® X-algebra KD% with
‘at most 2n+2 elements such that A is not valid in KD%

When X is sKD itself, we may replace KD% in Proposition 7
with some KD%, J < i, because of Proposition 4 and the fact
that every KD® algebra is an sKD algebra. We thereby remove
the final deficiency in Proposition 6, as promised after its proof,
for the special case where X is sKD. Thus we get the (weak)
completeness result:

Theorem 1 (weak completeness) If A is a sentence but n

propositional variables, then A is a theorem of sKD iff A is
valid in some KD%, ] < 2n+2.
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Remark 3 sKD itself has no finite characteristic algebra, which
can be easily shown by the proof similar to that of Sugihara in
[12]. Thus, we can be ensured that sKD is not pretabular in the
sense as in section 1, since some proper normal extension of

sKD may have as an infinite characteristic algebra KD% - 0.

Remark 4 sKD may be ({(regarded as) just partially
paraconsistent because the implicative spread law A — (~A —
B) is valid in it, while the conjunctive spread law (A A ~A)
— B is not. sKD may be also just weakly relevant in the sense
that that A — B is a theorem does not imply that A and B
share a sentential variable, which is the relevance principle of
Anderson and Belnap, because of A4, while the "triviality” and
the "absurdity” (see section 1) are not valid in it.

Note that, given the algebraic work, we can also easily prove
that the following strong completeness theorem.

Theorem 2 (strong completeness} Let I' be a set of sentences
and A be a sentence. Then a necessary and sufficient condition
for A to be deducible from I' in sKD is that every evaluation in
a KD® algebra which gives every sentence of I' a designated
value also gives A a designated one.

Proof (Sketch) The necessity is obvious since KD® algebras are
normal. By contraposition, we prove its sufficiency. Suppose A is
not deducible from I'. Consider the normal Lindenbaum algebra
for sKD A(sKD). The set F of all elements [B] such that B is
deducible from I' is a filter containing every designated element
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of A(sKD). Thus by applying Proposition 3, we can construct an
evaluation into some KD°® algebra, as we did in the proof of
Theorem 6, so that every sentence deducible from I' receives a
designated value and vet A does not. []

6. Deduction Theorem for sKD

Before giving a deduction for sKD, let us first consider the
"iterated implication” A —? B abbreviating the number of
implication, i.e., which is an abbreviation of A — (A — B). We
define the "elliptical implication” = as standing for — or —?

Where I' is a list of formulas of sKD (thought of as
hypothesis), we define a deduction from [' to be a sequence B;j,
By, -, By, where for each B;, 1 < i < n, either (1) Biis in T,
or (ii) B; is an axiom, or (i) B; follows from preceding
members of the sequence by the rules of sKD. A formula A is
called to be deducible from I', in symbols I' Fxp A, just in
case there is some deduction from I' ending in A. Then, since
sKD has MP and AD as its rules, it is obvious

lemma l T bty A and T +5kp A — B, then I’ +xp B
and if I' begp A and I' xp B, then I' ko A A B.

Then, we can obtain the elliptical deduction theorem (EDT) as
follows:

Theorem 3 (EDT for sKD) IfI', A «p B, then ' w«p A = B.

Proof Assume I, A +xp B. Then there is a deduction B;, By,
“+, Bm (B is By from I', A. We prove
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(EDT) T’ +«p A = B;

fori=1,2 -, m Taking i = m in EDT, we have Theorem 3.

Now we prove EDT by induction on i. Thus by induction
hypothesis we assume that EDT holds for all values of i that
are less than some fixed value of i and prove EDT for that
fixed value of i.

Case 1. B; satisfies (). Then B; is a member of I' or A. Let I

be a list of a finite sequence Ai, A -, An1 and A be A,
Then Bi is A; for some j = 1, 2, - , n.
Subcase 1.1. Let j =1, 2, - , n-1,ie, Ay €. Then by (), I

Fap Aj and thus I’ Fp B By A4, I’ o Bi & (A — B).
Hence, by Lemma 1, I' Fgp A — B;, and thus I' +«p A = Bi.
Subcase 1.2. Let j = n, i.e. Aj be A. Then A = Biis A — A
Thus, I' Fskp A — Bi by Al, and thus I' ~«p A = B:

Case 2. B; satisfies (ii). Then B; is an axiom scheme of sKD.
Thus, I' F«p Bi. By the proof similar to Subcase 1.1, I' Fsgp A

= B

Case 3. B; satisfies (iii). Then there are }, k < i such that either
(3.1) Bk is Bj — Bi or (3.2) Bi is B; A Bk

Subcase 3.1. By the induction hypothesis

(**) I' Fsxp A — B;
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and

' Fskp A — B

Then,

(#xx) I' bxp A — (B; — By.
By (#xx), A3, and Lemma 1,
(exx) I' bk By — (A — By

By (#%), (»+*x) and suffixing as a theorem, I' a0 A — (A —
By, and thus ' +&n A = B.

Subcase 3.2. By the induction hypothesis we can state (¥*)
above. Then by A6 and Lemma 1,

(kxxxx) T' ok A — (Bj A By,

Thus, since Biis B A B, I' xp A — Bi. Hence, I' Fp A =
Bi. This completes the proof of this theorem. [

Since by A4 (A — B) —» (A — (A — B)), we can obtain from
Theorem 3 the Deduction Theorem (DT) for sKD as follows.

Corollary 1 (DT for sKD) If T, A o B, then T Fwp A —
(A — B).
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We note that we can easily show that the converse of
Corollary 1, ie, if T +skp A — (A — B), then T, A +«p B.
Thus we can obtain that

Corollary 2 T, A Fxp Biff T ko A — (A — B).
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