최근에는 발전하는 정보통신 기술을 이용하여 악의적인 코드들이 제작되고 있고 이를 기존 탐지 시스템으로는 탐지하는게 역부족인 실정이다. 이러한 지능적이고 악의적인 코드를 정확하고 효율성 있게 탐지하고 대응하기 위해서는 지능적 탐지 모델이 필요하다. 그리고, 탐지 성능을 최대로 높이기 위해서는 악의적인 코드의 주요 특징 정보 집합으로 훈련하는 것이 중요하다. 본 논문에서는 지능적 탐지 모델을 설계하고 모델 훈련에 필요한 데이터를 변환, 차원축소, 특징 선택 단계를 거쳐 주요 특징 정보 집합으로 생성하는 기법을 제안하였다. 그리고 이를 기반으로 악의적인 코드별로 주요 특징 정보를 분류하였다. 또한, 분류된 특징 정보들을 기반으로 변형되거나 새로 등장하는 악의적인 코드를 분석하고 탐지하는데 사용할 수 있는 공통 특징 정보를 도출하였다. 제안된 탐지 모델은 제한된 수의 특성 정보로 학습하여 악의적인 코드를 탐지하기에 탐지 시간과 대응이 빨리 이루어져 피해를 크게 줄일 수 있다. 그리고, 성능 평가 결과값은 학습 알고리즘에 따라 약간 차이가 나지만 악의적인 코드 대부분을 탐지할 수 있음을 평가로 알 수 있었다.
본 논문에서는 LSTM(Long Short-Term Memory)을 기반으로 하는 Deep Learning 모델을 구축하여 인간의 습관적 특성을 고려한 악성 도메인 탐지 방법을 제시한다. DGA(Domain Generation Algorithm) 악성 도메인은 인간의 습관적인 실수를 악용하여 심각한 보안 위협을 초래한다. 타이포스쿼팅을 통한 악성 도메인의 변화와 은폐 기술에 신속히 대응하고, 정확하게 탐지하여 보안 위협을 최소화하는 것이 목표이다. LSTM 기반 Deep Learning 모델은 악성코드별 특징을 분석하고 학습하여, 생성된 도메인을 악성 또는 양성으로 자동 분류한다. ROC 곡선과 AUC 정확도를 기준으로 모델의 성능 평가 결과, 99.21% 이상 뛰어난 탐지 정확도를 나타냈다. 이 모델을 활용하여 악성 도메인을 실시간 탐지할 수 있을 뿐만 아니라 다양한 사이버 보안 분야에 응용할 수 있다. 본 논문은 사용자 보호와 사이버 공격으로부터 안전한 사이버 환경 조성을 위한 새로운 접근 방식을 제안하고 탐구한다.
As the usage of mobile devices extremely increases, malicious mobile apps(applications) that target mobile users are also increasing. It is challenging to detect these malicious apps using traditional malware detection techniques due to intelligence of today's attack mechanisms. Deep learning (DL) is an alternative technique of traditional signature and rule-based anomaly detection techniques and thus have actively been used in numerous recent studies on malware detection. In order to develop DL-based defense mechanisms against intelligent malicious apps, feeding recent datasets into DL models is important. In this paper, we develop a DL-based model for detecting intelligent malicious apps using KU-CISC 2018-Android, the most up-to-date dataset consisting of benign and malicious Android apps. This dataset has hardly been addressed in other studies so far. We extract OPcode sequences from the Android apps and preprocess the OPcode sequences using an N-gram model. We then feed the preprocessed data into LSTM and apply the concept of Information Gain to improve performance of detecting malicious apps. Furthermore, we evaluate our model with numerous scenarios in order to verify the model's design and performance.
모바일 악성코드는 웜에 의한 전파가 대표적이며, 웜의 확산 특징을 분석하기 위한 모델링 기법들이 제시되었지만 거시적인 분석만 가능하였고 특정 바이러스, 악성코드에 대해 예측하기는 한계점이 있다. 따라서 본 논문에서는 과거의 악성코드 데이터를 활용하여 미래의 악성코드의 발생을 예측 할 수 있는 마코프 체인을 기반으로 한 예측 방법을 제시하였다. 마코프 체인 예측 모델링에 적용할 악성코드 평균값은 전체 평균값, 최근 1년 평균값, 최근 평균값(6개월)의 세 가지 범위로 분류하여 적용하였고, 적용하여 얻어진 예측 값을 비교하여 최근 평균 값(6개월)을 적용하는 것이 악성코드 예측 확률을 높일 수 있음을 확인하였다.
최근에는 인공지능을 활용하여 악성 URL을 탐지하는 다양한 연구가 진행되고 있으며, 대부분의 연구 결과에서 높은 탐지 성능을 보였다. 그러나 고전 머신러닝을 활용하는 경우 feature를 분석하고 선별해야 하는 추가 비용이 발생하며, 데이터 분석가의 역량에 따라 탐지 성능이 결정되는 이슈가 있다. 본 논문에서는 이러한 이슈를 해결하기 위해 URL lexical feature를 자동으로 추출하는 딥러닝 모델의 일부가 고전 머신러닝 모델에 결합된 형태인 DL-ML Fusion Hybrid 모델을 제안한다. 제안한 모델로 직접 수집한 총 6만 개의 악성과 정상 URL을 학습한 결과 탐지 성능이 최대 23.98%p 향상되었을 뿐만 아니라, 자동화된 feature engineering을 통해 효율적인 기계학습이 가능하였다.
악성코드 중 가장 많은 비율을 차지한 것은 트로이 목마이며, 트로이 목마의 경우 그 자체로 피해를 주는 형태가 주종을 이루었지만, 최근에는 백도어 방식으로 사용자 정보를 몰래 빼오는 형태가 많아지고 있으며, 트로이 목마의 특성을 갖고 있는 웜이나 바이러스가 증가하고 있는 추세이다. 웜의 확산 특징을 분석하기 위한 모델링 기법들이 제시되었지만 거시적인 분석만 가능하였고 특정 바이러스, 악성코드에 대해 예측하기는 한계점이 있다. 따라서 본 논문에서는 과거의 Trojan 데이터를 활용하여 미래의 Trojan 악성코드의 발생을 예측 할 수 있는 ESP모델을 제시하였다. 이 모델을 적용하여 얻어진 예측 값을 마코프 체인과 비교한 결과 제안한 모델이 기존 발생한 실제 빈도수와 유사한 값을 나타냄을 알 수 있었다.
본 연구는 안드로이드 정적분석을 기반으로 추출된 AndroidManifest 권한 특징을 통해 악성코드를 탐지하고자 한다. 특징들은 AndroidManifest의 권한을 기반으로 분석에 대한 자원과 시간을 줄였다. 악성코드 탐지 모델은 1500개의 정상어플리케이션과 500개의 악성코드들을 학습한 SVM(support vector machine), NB(Naive Bayes), GBC(Gradient Boosting Classifier), Logistic Regression 모델로 구성하여 98%의 탐지율을 기록했다. 또한, 악성앱 패밀리 식별은 알고리즘 SVM과 GPC (Gaussian Process Classifier), GBC를 이용하여 multi-classifiers모델을 구현하였다. 학습된 패밀리 식별 머신러닝 모델은 악성코드패밀리를 92% 분류했다.
웹사이트나 메일의 첨부 파일을 이용해 문서형 악성코드의 유포가 활발하게 이루어지고 있다. 문서형 악성코드는 실행 파일이 직접 실행되는 것이 아니므로 보안 프로그램의 우회가 비교적 쉽다. 따라서 문서형 악성코드는 사전에 탐지하고 예방해야 한다. 이를 탐지하기 위해 문서의 구조를 파악하고 악성으로 의심되는 키워드를 선정하였다. 문서 내의 스트림 데이터를 아스키코드값으로 변환하여 데이터셋을 만들었다. CNN 알고리즘을 이용하여 문서의 스트림 데이터 내에 존재하는 악성 키워드의 위치를 확인하고 인접 정보를 활용하여 이를 악성으로 분류했다. 파일 내의 스트림 단위로 악성코드를 탐지한 결과 0.97의 정확도를 보였고, 파일 단위로 악성코드를 탐지한 결과 0.92의 정확도를 보였다.
최근 스마트폰 시장의 빠른 성장과 함께, 애플리케이션 시장 또한 크게 성장하고 있다. 애플리케이션은 날씨, 뉴스와 같은 정보검색을 비롯하여 교육, 게임, SNS 등 다양한 형태로 제공되고 있으며 다양한 유통경로를 통해 배포되고 있다. 이에 따라 일상에서 유용하게 사용할 수 있는 애플리케이션뿐만 아니라 악의적 목적을 가진 악성 애플리케이션의 배포 역시 급증하고 있다. 본 연구에서는 오픈마켓을 통해 배포되고 있는 정상 애플리케이션 및 Android MalGenome Project에서 제공하는 악성 애플리케이션의 이벤트를 추출, 분석하여 임의의 애플리케이션의 악성 여부를 판별하는 모형을 작성하고, 여러 가지 지표를 통해 모형을 평가하였다.
가상 화폐와 전자 지갑의 등장으로 익명성을 기반으로 금전적 이득을 취할 수 있는 방법이 생김에 따라, 악성메일을 이용한 피싱과 악성코드의 전파가 지속적으로 증가하고 있다. 이에 대한 피해를 최소화하기 위해서는 인적 요소인 보안인식과 기술적 요소인 대응 능력을 고루 향상시켜야 하며, 이는 실전과 같은 악성메일 대응 훈련을 통해 향상될 수 있다. 본 연구에서는 실전과 같은 악성메일 훈련 수행을 고려한 모델을 제시하였다. 임직원들의 보안인식 향상을 위한 인식 제고 훈련과 악성메일 침투에 대한 대응 능력을 향상시키기 위한 탐지 및 대응 훈련으로 분류하여 목적에 맞는 훈련 시스템, 훈련용 악성코드의 주요 기능, 구현 및 위장 기법, 기술적 대책 우회 기법에 대해 서술하였다. 이 모델을 바탕으로 3년간 수행한 훈련 데이터를 수집하였으며, 훈련횟수, 훈련테마, 위장기법에 따른 결과 분석을 통해 훈련의 효과성을 연구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.