• Title/Summary/Keyword: magnetic bearing

Search Result 471, Processing Time 0.023 seconds

Characteristic Analysis of Homopolar Magnetic Bearing (호모폴라형 자기베어링의 특성 해석)

  • Jang, Seok-Myeong;Kwon, Jeong-Ki;Cho, Han-Wook;Yoo, Dae-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.119-121
    • /
    • 2003
  • The magnetic bearing is an important element for high-speed system, such as semiconductor equipment and machine tools. Particularly, The homopolar magnetic bearing has the advantages of lower power losses, more space for heat dissipation and coil winding. This paper deals with analysis and comparison of the homopolar magnetic bearing according to four different PM structures. On the basis of these results, we find one homopolar magnetic bearing superior to the others. finally, this paper derive force characteristic equation for this model and deals with comparison of between analytical and FE results.

  • PDF

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Control and Design of 50,000rpm Class Active Magnetic Bearing System for High Speed-Small Size Precision Motor (50,000rpm급 초고속 소형 정밀모터용 능동 자기베어링 시스템 제어 및 설계)

  • Kang Gyu-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.408-415
    • /
    • 2006
  • This paper deal with control and design of 50,000rpm class Active Magnetic Bearing(AMB) system for high speed precision motor. In the design of AMB system, the design parameters adopted high robust rotor shaft, Active Magnetic Bearing, sensor and control system. In the design of Magnetic Bearing, 2-D Finite Element Method(FEM) is used and transfer matrix method is using for rotor dynamics. The control accuracy of high speed AMB system is demonstrated by experimentations.

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Thrust Hybrid Magnetic Bearing using Axially Magnetized Ring Magnet

  • Park, Cheol Hoon;Choi, Sang Kyu;Ahn, Ji Hoon;Ham, Sang Yong;Kim, Soohyun
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.302-307
    • /
    • 2013
  • Hybrid-type magnetic bearings using both permanent magnets and electromagnets have been used for rotating machinery. In the case of conventional thrust hybrid magnetic bearings supporting axial loads, radially magnetized permanent ring magnets, which have several demerits such as difficult magnetization and assembly, have been used to generate bias flux. In this study, a novel thrust hybrid magnetic bearing using an axially magnetized permanent ring magnet is presented. Because it is easy to magnetize a ring magnet in the axial direction, the segmentation of the ring magnet for magnetization is not required and the assembly process can be simplified. For verifying the performance of the proposed method, a test rig that consists of a proposed thrust magnetic bearing and variable loads is constructed. This paper presents the detailed design procedures and the obtained experimental results. The results show that the developed thrust magnetic bearing has the potential to replace conventional thrust magnetic bearings.

Performance Tests of an Induction Motor with Hexahedron HTS Bulk Bearing (고온초전도 벌크 베어링을 사용한 유도 전동기의 특성 시험)

  • 임형우;이광윤;박명진;차귀수;이지광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.286-290
    • /
    • 2003
  • The high temperature superconducting bulk can be used as the bearing of induction motors. This paper presents the fabrication and test results of an induction motor with superconducting bearings using HTS bulks. The bearing had eight hexahedron type YBCO bulks. Height, width and thickness of the HTS bulk were 30mm, 30mm and 10mm, respectively. Single phase induction motor was used to drive the shaft made of aluminum and the rotor of a conventional induction motor. To estimate the performance of the HTS bulk magnetic bearing, no load test, load test and Impact test were carried out. Load tests were performed by using air resistance caused by the shaft-mounted thin cylinder with buckets. Impact tests by axial direction and vertical direction impact showed that the vibration of the shaft gradually decayed. The induction motor with HTS bulk magnetic bearing rotated silently and smoothly throughout the tests. According to the test results, conventional bearings can be replaced with superconducting magnetic bearings made of HTS bulks.

Research on Forces and Dynamics of Maglev Wind Turbine Generator

  • Wang, Nianxian;Hu, Yefa;Wu, Huachun;Zhang, Jinguang;Song, Chunsheng
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.443-453
    • /
    • 2013
  • Maglev wind turbine generator (MWTG) technology has been widely studied due to its low loss, low maintenance cost, and high reliability. However, the dynamics of the magnetic bearing system differ fromthe those of the traditional mechanical bearing system. A horizontal axial MWTG supported with a permanent magnetic bearing is designed in this research and the radial forces and the natural frequencies of the rotor system are studied. The results show that the generatorhas a cyclical magnetic forceand an unreasonable bearing stiffness may mean that the rotor system needs to work in the resonance region; the bearing stiffness is the key factor to avoid this problem. This is the main rule of the bearing stiffness design in the MWTG, and this rule can also be used in other maglev permanent magnet motors.

Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle (고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계)

  • 노승국;경진호;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF