The Inseong gold-silver mine is located 3Km northwest of Suanbo, Choongcheongbugdo, Republic of Korea. The mine occurs in the shear zone formed by tension fractures within the Hwanggangri Formation of the Ogcheon metamorphic belt. Ore minerals found in the gold-silver bearing hydrothermal quartz vein composed mainly of pyrite, arsenopyrite, sphalerite, galena and minor amount of chalcopyrite, pyrrhotite, stannite, bismuthininte, native bismuth, chalcocite, electrum and tellurian canfieldite(?). The gangue minerals are quartz, calcite, chlorite and rhodochrocite. Wallrock alterations such as chloritization, silicitication, pyritization, carbonitization and sericitization can be observed in or around the quartz vein. According to the paragenetic sequence, quartz vein structure and mineral assemnlages, three different stages of ore formation can be recognized. The physico-chemical environment of ore formation in this deposit shows slight variation from stage to stage, but the condition of main ore deposition can be summarized as follows. Fluid inclusion, S-istope geothermometry and geothermometry based on mineral chemistry by use of arsenopyrite and chlorite show the ore was formed at temperature between 399 and $210^{\circ}C$ from fluids with salinities of 3.3-5.8 wt.% equivalent NaCl. It indicates that pressure during the mineralization is less than 0.6 Kb corresponding to a depth not greater than 1Km. S-isotope data suggests that thermal fluid may have magmatic origin wit some degree of mixing with meteoric water. In coclusion, the Inseong gold-silver deposit was formed at shallow depth and relatively high-temperature possibly with steep geothermal gradient under xenothermal condition.
Mesozoic granitic rocks in the Korean peninsula contain $H_2$, $CH_4$, CO and rare $C_2H_6$. The Jurassic Daebo granites mostly belonging to the ilmenite series are predominated in $CH_4$. Meanwhile, the magnetite series Bulguksa granites of Cretaceous age in the Kyongsang basin and Okchon zone are relatively enriched in $CO_2$. The older granites have a wide variation of $CH_4/CO_2$ ratios (0.1~1.0) compared to those of the younger ones (0.1~0.5). This characteristics of gas compositions suggest that the Jurassic granites are principally derived from the partial melting of metasedimentary rocks with much reducing materials in the lower continental crust. On the other hand, the mantle source granitic magmas might be responsible for the Cretaceous granites characterized by dominant and homogeneous $CO_2$ gas compositions. Liquid-vapor homogenization temperatures of quartz in the Jurassic and Cretaceous granites range from 108 to $539^{\circ}C$ (av. $324^{\circ}C$) and 160 to $556^{\circ}C$ (av. $358^{\circ}C$), respectively. Their salinities are between 0.2 and 16.3 wt.% NaCl for the Jurassic granites and 0.4, and 15.6 wt.% NaCl for the Cretaceous ones. Fluid inclusions with solid daughter minerals lying on or near the halite equilibrium curve represent inclusion fluids from the magmatic stage. The type I and II fluid inclusions which are plotted apart from the equilibrium curve are considered to trap in late hydrothermal alteration stage with a increasing influx of metedric water.
Mineral chemistry and stable isotope compositions of sericites from the Sangdong mine in the Kimhae area, Kyungsangnamdo, were studied. The Sangdong sericite deposit occurs in rhyolitic tuff of late Cretaceous age and considers to have been fonned by the hydrothennal alteration. The sericites are classified as $2M_1$ polytype and are characterized by less celadonite substitution indicating muscovite-phengite series. Their compositions are very close to that of the ideal muscovite but net layer charge ranges 1.71~1.91 which is less than 2 per formula unit of ideal muscovite. Predominant interlayer cation is K and K/(K+Na) ratio ranges 0.91 and 0.93. ${\delta}^{18}O$ values of sericites and quartz separated from the ore range 7.70~9.07 and 8.20~10.87‰, respectively. The formation temperature of sericite can be estimated as $315{\sim}340^{\circ}C$( based on ${\delta}^{18}O$ value of sericite and ${\delta}D$ value of of Cretaceous meteoric water. Their formation temperature discrepancy between coexisting sericite and quartz indicates that they are in isotopically inequilibrium. Two types of quartz, coarse grained phenocrysts and micrcrystalline aggregates are observed and the former must have been formed during volcanic eruption and remained isotopically unexchanged during hydrothermal alteration period. ${\delta}^{14}S$ values of pyrites range 1.9~4.5‰ which is within a range of volcanogenic sulfur, indicating magmatic source.
중생대부터 한반도에서 나타나는 열수계는 쥐라기/전기 백악기 (약 $200{\sim}130$ Ma) 심부지질환경과 관련된 조산대형 열수계와 후기 백악기/제3기 (약 $110{\sim}45$ Ma) 천부지질환경의 후조산대형 열수계로 구분된다. 이러한 열수계에 수반된 금속광화작용은 시 공간적 관점에서 조산대형 및 후조산대형 화성활동의 특성을 반영하고 있다. 그리고 각 유형 광화유체의 ${\delta}^{18}O_{H2O}$는 쥐라기 조산대형 광상에 비하여 후기 백악기 후조산대형 광상에서 현저한 조성변화를 보이고 있다. 즉, 조산대형 광상은 경기 영남 육괴에 배태되며, 심부 지질조건에서 균질한 $^{18}O$-부화된 고온성 광화유체로부터 진화된 열수충진형 금광상과 희유금속 광상으로 인접한 대보화강암체 또는 분화된 페그마타이트로부터 유입된 마그마수 또는 일부 변성수로부터 유도되었다. 반면에 후기 백악기 광상은 태백산분지, 옥천 지향사대 및 경상분지의 전 지역에 걸쳐 광범위하게 산출되며, 철합금, 비철금속 및 귀금속 광상의 열수충진형, 열수교대형, 각력 파이프형, 반암형, 스카른형 광상과 같은 다양한 광상유형으로 배태되고 있다. 이러한 다양한 유형의 광화유체는 물-암석 반응에 따라 산소 동위원소비$({\delta}^{18}O)$가 폭 넓게 변화하는 산소 편이의 전형적인 특징을 보이는 반면 수소 동위원소비$({\delta}D_{H2O})$는 비교적 균질한 조성특징을 나타내고 있다. 또한 근지성 유형 광상의 산소 동위원소비는 부화된 경향을 보이지만, 점이성/원지성 유형 광상에서는 전반적으로 폭 넓게 변화하며 부분적으로 결핍된 특징을 보이고 있다. 즉 근지성 유형의 Cu(-Au)또는 Fe-Mo-W 광상에서는 탈가스화작용 이후에 나타나는 마그마수의 전형적인 특징을 보이는 반면, 다금속 광상과 귀금속 광상은 점이성 또는 원지성 유형으로 지표수(또는 순환수)의 혼입이 우세한 경향을 보인다.
우리나라에서 가장 큰 화산섬인 제주도에는 약 360여 개의 단성화산체가 분포되어 있다고 알려져 있으나, 본 연구를 통해 기존에 일려진 것보다 100여 개가 더 많은 총 455개의 단성화산체가 분포하고 있음을 확인하였다. 총 455개의 단성화산체를 형태학적으로 분석해 본 결과, 분석구가 373개로 전체의 82.0%를 차지하여 가장 높은 비율로 나타나며, 분석구 외에도 정상부가 뾰족한 형태이면서 용암으로 구성된 것이 9개(2.0%), 순상화산체가 27개(5.9%), 응회환이 17개(3.7%), 응회구가 3개(0.7%), 마르가 1개(0.2%), 용암돔이 25개(5.5%)가 분포하고 있다. 또한 이들 중 알오름의 형태로 나타나는 것이 15개가 있다. 단성화산체의 지역별 분포를 살펴보면 전체적으로 제주도의 서쪽에 비해 동쪽에 더 우세하게 분포하고 있음을 알 수 있다. 또한 강수량과 같은 풍화 요인에 의해 분석구의 형태가 영향을 받는다면, 강수량이 월등히 더 많은 남부 지역에 한 방향으로 터진 말발굽형 화구를 가진 분석구나 초승달형 분석구, 불규칙한 형태의 분석구 등이 더 많이 분포해야 할 것이다. 그러나 실제 제주도에서는 오히려 강수량이 더 적은 북부 지역에 이러한 분석구들이 더 많이 분포하는 것으로 나타나, 제주도의 남북 간의 기후적인 요소의 차이가 분석구의 형태나 분포에 크게 영향을 끼친 것은 아니라고 생각된다. 단성화산체 중 응회환, 응회구와 마르는 주로 제주화산섬의 지하 또는 해안가의 저지대에 위치하며, 분석구는 대부분이 해안에서 떨어진 섬의 내륙부에 위치한다. 이는 제주도 단성화산체를 형성한 화산활동이 물(지하수 또는 얕은 바닷물)과의 접촉 유무에 따라 수성화산활동(수증기마그마분화)을 하거나, 마그마성화산활동(스트롬볼리안분화 혹은 하와이안분화)을 한 것임을 알 수 있다. 또한 이들 단성화산체의 고도별 분포를 살펴보면 고도 300 m 이하의 해안저지대에 253개(55.6%), 고도 300~600 m의 중산간지대에 110개(24.2%), 600 m 이상의 산악지대에 92개(20.2%)가 분포하고 있어 과반수 이상이 해안저지대에 분포하고 있음을 알 수 있다. 제주화산섬에 분포하는 단성화산체들은 응력장 안에서 생긴 단층이나 틈을 따라서 틈새 분출을 통해 선상으로 배열되어 나타나는 것과 이러한 틈새와는 무관하게 독립된 단일 화구를 통한 중심 분출을 통해 생성된 것이 함께 나타남을 알 수 있다.
형제섬은 송악산에서 북동쪽으로 약 2 km 떨어진 해상에 위치한 침식 잔존 화산체로서, 하부로부터 화산쇄설층, 집괴암 및 분석층, 분화구 용암, 아아 용암류와 이를 피복하는 재동퇴적층과 해빈퇴적층 순으로 이루어져 있다. 형제섬 화산체는 초기 증기 마그마성에서 후기 마그마성 분출과 용암분류로 변화한 화산분화를 기록하고 있는 분출물로 이루어져 있으며, 노두로 남아있는 화산쇄설층은 응회구의 외륜 일부로 해석된다. 화산탄과 분화구 용암류는 현무암질 조면안산암의 조성(SiO2 51.3 wt%, Na2O+K2O 6.0 wt%)이며 감람석 현무암류에 해당한다. 단계별 가열에 따른 Ar-Ar 연대측정법에 의한 형제섬 용암류의 플래토 연대는 9.2±3.6 ka로서, 약 3천 7백 년 전의 분화 기록을 가지고 있는 인접한 송악산 화산체보다 앞서 형성되었음을 의미한다. 여전히, 약 천 년 전 화산분화의 역사 기록에 부합되는 화산체를 찾는 숙제가 남는다.
삼성 금-은광상은 백악기 셰일과 사암 내에 발달된 단층대를 충진한 석영맥광상이다. 이 광상의 광화작용은 단층-각력대에 수반되며 2시기로 구분된다. 광화I시기는 주된 광화시기이고 광화II시기는 광화작용이 관찰되지 않는다. 광화 I시기는 모암변질광물(견운모, 황철석, 녹니석, 석영), 금홍석, 천금속 황화광물(자류철석, 황철석, 섬아연석, 황동석, 방연석)과 에렉트럼 등이 관찰된다. 광화II시기는 석영, 방해석 및 황철석만 관찰된다. 유체포유물 자료에 의하면, 광화II시기의 균일화온도와 염농도는 각각 $145\sim309^{\circ}C$, 0.4~12.4 wt.% NaCl 로서 광화유체가 천수의 혼입에 의한 냉각과 희석이 있었음을 지시한다. 천금속 황회광물과 에렉트럼은 온도 $200\sim300^{\circ}C$에서 냉각과 희석작용에 의해 침전되었다. 황(9.3~10.8‰) 기원은 화성기원과 모암내의 황에서 유래된 것으로 해석된다. 산소 [-2.3~0.9‰(석영 0.3‰과 0.9‰, 방해석: -2.3‰)] 및 수소[-86~-76‰(석영: -86‰과 -82‰, 방해석: -76‰)]동위원소값의 자료로 볼 때, 이 광상의 광화유체는 천수 기원의 유체가 주종을 이룬 것으로 보이며 광화작용이 진행됨에 따라 기원이 다른 천수의 혼입이 작용한 것으로 해석할 수 있다.
Many hydrothermal skarn-type iron ore deposits inchiding Mulgeum, Yangseong, Maeri and Kimhae mines are distributed in the south-eastern Gyeongnam Province, Korea. The deposits are magnetite veins which occurred in propylitized andesitic rock near the contact with late Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The order of the skarn zones from the vein is garnet-quartz skarn, epidote skarn, and epidote-orthoclase skarn. The garnets include isotropic or anisotropic andradite($Ad_{100{\sim}70}$), and the epidotes are composed of pistacite($Ps_{21-31}$). Fe contents of the epidotes generally increase toward the magnetite veins. Epidotes and garnets often show compositional variations from grain to grain, that is, their Fe and Al contents vary inversely. This suggests that the variations depend mainly upon $fo_2$ during the skarnization. Oxygen and carbon isotope analyses of minerals from andesitic rock, micrographic granite, major skarn zones and post-mineralization zones were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothemal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the more deeply seated micrographic granite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and the extensive isotopic exchange occurred with the propylitized andesitic rock. During this process, the temperature and ${\delta}O^{18}_{H_2O}$ value of hydrothermal solution were lowered gradually. At the stage of iron ore precipitation, because after all the alteration was already finished, the oxygen isotopic exchange with the wall rock was nearly not taken. The relatively high ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$, and relatively low ${\delta}C^{13}$ values of calcites of post mineralization stage, are the results of leaching of the high ${\delta}O^{18}$ chert xenolith in the andesitic rock and low ${\delta}C^{13}$ andesitic rock.
전남 해남 화원일대의 석영맥들은 선캄브리아기의 변성퇴적암류와 쥬라기의 화강암 내에 발달된 단층대를 충진한 천열수성 석영맥이다. 이들 석영맥의 광화작용은 hypogene 시기와 supergene 시기로 구분된다. Hypogene 시기의 광물은 석영, 방해석, 녹염석, 녹니석, 일라이트, 견운모로서 프로필라이트대와 점토대로 구성되며 석영맥에서 산출되는 황화광물은 황철석, 섬아연석, 황동석, 방연석, 반동석, 규버나이트, 함은사면동석, Pb-Ag-S계 광물 및 Pb-Te-S계 광물 등이 관찰된다. Supergene 시기에는 Fe-Mn 산화물, Zn-Fe 산화물 및 Pb 산화물 등이 생성되었다. 유체포유물 자료에 의하면, hypogene 시기의 균일화온도와 염농도는 각각 $291.2{\sim}397.3^{\circ}C,\;0.0{\sim}9.3\;wt.%$ 범위를 보이며, 광화유체는 일부 비등과 기원이 다른 천수와의 혼입에 의해 냉각 및 희석작용을 겪었다. 산소($-0.7{\sim}3.5%_{\circ}$(백색석영 $-0.7{\sim}3.5%_{\circ}$, 투명석영 $2.4%_{\circ}$)), 수소($-7.0{\sim}55%_{\circ}$(백색석영$-7.0{\sim}55%_{\circ}$, 투명석영: $-62%_{\circ}$))동위원소 값 자료로 볼 때, 이 석영맥의 광화유체는 마그마 기원의 유체가 광화작용이 진행됨에 따라 천수의 혼입이 작용한 것으로 해석할 수 있다.
전남 및 경상점토열수변질지역은 백악기 유천층군의 화산암지대내 분포한다. 전남 변질지역의 모암은 산성화산암류이며 경상 변질지역의 모암은 산성 및 중성화산암류이나 중성화산암류가 우세하다. 두 변질지역의 열수변질작용을 비교 하였을 때 중요한 차이는 열수용액의 기원으로 생각된다. 경상 열수변질지대는 마그마수가 열수의 주 기원으로서 고온성 변질광물인 엽납석이나 홍주석이 우세하게 산출되며 마그마수에서 특징적인 붕소 함유 광물인 듀모티어라이트와 전기석의 산출이 특징적이다. 이에 반해서 전남 열수변질지역은 천수와 열수의 혼합용액이 열수의 주 기원으로 천수가 중요한 역할을 하였으며, 저온성 광물인 카오린, 명반석 등이 우세하게 산출된다. 또 다른 중요한 차이는 pH 와 같은 열수용액의 화학성 차이이다. 전남 열수변질지역의 명반석-카오런-석영 변질광물군은 저온의 강산성 열수용액으로서 "산-황산염형" 으로 특징되며 이에 반해 경상 열수변질지역의 견운모-석영 변질광물군은 "석영-견운모형" 에 해당되며 고온의 중성 내지 약산성 열수용액에 의한 변질특성을 나타낸다. 또한 두 지역은 열수변질대 모암인 화산암류의 지질구조 환경에서 차이를 찾아 볼 수 있다. 전남 열수변질지역은 산성암질 돔과 성인적으로 관련되나 경상 열수 변질지역은 칼데라와 관련된 특성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.