Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea

전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경

  • Yoo, Bong-Chul (Department of geology and environmental sciences, Chungnam National University) ;
  • Oh, Jin-Yong (Nondestructive Research Lab. Cultural Property, Kongju National University) ;
  • Kang, Heung-Suk (Korea Resources Corporation) ;
  • Lee, Hyun-Koo (Department of geology and environmental sciences, Chungnam National University)
  • 유봉철 (충남대학교 지구환경과학과) ;
  • 오진용 (공주대학교 문화재비파괴진단연구실) ;
  • 강흥석 (대한광업진흥공사) ;
  • 이현구 (충남대학교 지구환경과학과)
  • Published : 2006.10.30

Abstract

Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.

전남 해남 화원일대의 석영맥들은 선캄브리아기의 변성퇴적암류와 쥬라기의 화강암 내에 발달된 단층대를 충진한 천열수성 석영맥이다. 이들 석영맥의 광화작용은 hypogene 시기와 supergene 시기로 구분된다. Hypogene 시기의 광물은 석영, 방해석, 녹염석, 녹니석, 일라이트, 견운모로서 프로필라이트대와 점토대로 구성되며 석영맥에서 산출되는 황화광물은 황철석, 섬아연석, 황동석, 방연석, 반동석, 규버나이트, 함은사면동석, Pb-Ag-S계 광물 및 Pb-Te-S계 광물 등이 관찰된다. Supergene 시기에는 Fe-Mn 산화물, Zn-Fe 산화물 및 Pb 산화물 등이 생성되었다. 유체포유물 자료에 의하면, hypogene 시기의 균일화온도와 염농도는 각각 $291.2{\sim}397.3^{\circ}C,\;0.0{\sim}9.3\;wt.%$ 범위를 보이며, 광화유체는 일부 비등과 기원이 다른 천수와의 혼입에 의해 냉각 및 희석작용을 겪었다. 산소($-0.7{\sim}3.5%_{\circ}$(백색석영 $-0.7{\sim}3.5%_{\circ}$, 투명석영 $2.4%_{\circ}$)), 수소($-7.0{\sim}55%_{\circ}$(백색석영$-7.0{\sim}55%_{\circ}$, 투명석영: $-62%_{\circ}$))동위원소 값 자료로 볼 때, 이 석영맥의 광화유체는 마그마 기원의 유체가 광화작용이 진행됨에 따라 천수의 혼입이 작용한 것으로 해석할 수 있다.

Keywords

References

  1. 김규한, 中井信之 (1988) 남한의 지하수 및 장수의 안정동 위원소조성. 지질학회지, 24권, p. 37-46
  2. 김창성, 최선규, 유인창, 김상엽, 유봉철, 이현구 (2005) 해남지역 은산 및 모이산 천열수 금은광상의 유체진화. 2005년도 대한자원환경지질학회 춘계학술발표회, p. 86-89
  3. 대한광업진흥공사 (2004) 목포지구 물리탐사보고서, 18p
  4. 임무택, 이윤수, 강희철, 김주용, 박인화 (2001) 해남지역의 백악기 암석에 대한 고지자기 연구. 자원환경지질, 34 권, p. 119-131
  5. 차문성, 윤성효 (1988) 한반도의 화산함몰구조 및 환상복합암체에 관한 연구. 지질학회지, v. 24, p 67-86
  6. Belkin, H.E. (1994) Microthermometric investigations: Th and Tm. practical and theoretical aspects. Short course of the working group 'inclusion in minerals', p. 7-23
  7. Bodnar,R.J. and Vityk,M.O. (1994) Interpretation of microthermometric data for $H_{2}O$-NaCI fluid inclusions: in De Vivo,B. and Frezzotti,M.L. eds.,Fluid inclusions in minerals: Method and applications: Short Course International Mineralogical Assoc.,p. 117-130
  8. Choi, S.G. Ryu, I.C. Pak, S.J. Wee, S.M. Kim, C.S. and Park, M.E. (2005) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geology Reviews, v. 26, p. 115-135 https://doi.org/10.1016/j.oregeorev.2004.10.005
  9. Hall, D.L. Sterner, S.M. and Bodnar, R.J. (1988) Freezing point depression of NaCI-KCl-$H_{2}O$ solutions. Econ. Geol., v. 83,p. 197-202 https://doi.org/10.2113/gsecongeo.83.1.197
  10. Hass, J.L. (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol.,v. 66, p. 940-946 https://doi.org/10.2113/gsecongeo.66.6.940
  11. Hedenquist, J.W. Arribas, M.A. and Gonzalez, D.E. (2000) Exploration for epithermal gold deposits,in -egaH mann,S.G. and Brown,P.E.,eds,Gold in 2000. Reviews in Economic Geology, v. 13, p. 245-277
  12. Kim,K.H. and Nakai, N. (1981) A study on hydrogen,oxygen and sulfur isotopic ratios of the hot water in South Korea. Geochemistry, v. 15, p. 6-16
  13. Koh, S.M. and Chang, H.W. (1996) Geological interpretation on the Cretaceous strata in the Haenam area, Chollannamdo, Korea. Econ. environ. Geol., v. 29, p. 381-393
  14. Linke, W.F. (1965) Solubilities of inorganic and metalorganic compounds. 4th ed., Washington, D.C., American Chemical Society, 1914p
  15. Luzhnaya, N.P. and Vereshtchetina, I.P. (1946) Sodium, calcium, magnesium chlorides in aqueous solutions at -57 to +$25^{circ}C$(polythermal solubility). Zhurnl. Prikl. Khimii., v. 19, p.723-733
  16. Matsuhisa, Y. Goldsmith, R. and Clayton, R.N. (1979) Oxygen isotope fractionation in the system quartzalbite-anorthite-water. Geochim. Cosmochim. Acta, v. 43, p. 1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  17. So, C.S. Chi, S.J. Yu, J.S. and Shelton, K.L. (1987) The jeonui gold-silver mine, Republic of Korea: A geochemical study. Mining Geology, v. 37, p. 313-322
  18. So, C.S. and Shelton, K.L. (1987a) Stable isotope and fluid inclusion studies of gold and silver-bearing hydrothermal vein deposits, Cheonan-CheongyangNonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., v. 82, p. 987-1000 https://doi.org/10.2113/gsecongeo.82.4.987
  19. So, C.S. and shelton, K.L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol., v. 82, p. 1309-1318 https://doi.org/10.2113/gsecongeo.82.5.1309
  20. Sterner, S.M. Hall, D.L. and Bodnar, R.J. (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCI-KCI-$H_{2}O$ under vapor-saturated conditions. Geochim. Cosmochim. Acta, v. 52, p. 989-1005 https://doi.org/10.1016/0016-7037(88)90254-2