The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications

남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계

  • 최선규 (고려대학교 지구환경과학과) ;
  • 박상준 (고려대학교 지구환경과학과)
  • Published : 2007.10.28

Abstract

Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.

중생대부터 한반도에서 나타나는 열수계는 쥐라기/전기 백악기 (약 $200{\sim}130$ Ma) 심부지질환경과 관련된 조산대형 열수계와 후기 백악기/제3기 (약 $110{\sim}45$ Ma) 천부지질환경의 후조산대형 열수계로 구분된다. 이러한 열수계에 수반된 금속광화작용은 시 공간적 관점에서 조산대형 및 후조산대형 화성활동의 특성을 반영하고 있다. 그리고 각 유형 광화유체의 ${\delta}^{18}O_{H2O}$는 쥐라기 조산대형 광상에 비하여 후기 백악기 후조산대형 광상에서 현저한 조성변화를 보이고 있다. 즉, 조산대형 광상은 경기 영남 육괴에 배태되며, 심부 지질조건에서 균질한 $^{18}O$-부화된 고온성 광화유체로부터 진화된 열수충진형 금광상과 희유금속 광상으로 인접한 대보화강암체 또는 분화된 페그마타이트로부터 유입된 마그마수 또는 일부 변성수로부터 유도되었다. 반면에 후기 백악기 광상은 태백산분지, 옥천 지향사대 및 경상분지의 전 지역에 걸쳐 광범위하게 산출되며, 철합금, 비철금속 및 귀금속 광상의 열수충진형, 열수교대형, 각력 파이프형, 반암형, 스카른형 광상과 같은 다양한 광상유형으로 배태되고 있다. 이러한 다양한 유형의 광화유체는 물-암석 반응에 따라 산소 동위원소비$({\delta}^{18}O)$가 폭 넓게 변화하는 산소 편이의 전형적인 특징을 보이는 반면 수소 동위원소비$({\delta}D_{H2O})$는 비교적 균질한 조성특징을 나타내고 있다. 또한 근지성 유형 광상의 산소 동위원소비는 부화된 경향을 보이지만, 점이성/원지성 유형 광상에서는 전반적으로 폭 넓게 변화하며 부분적으로 결핍된 특징을 보이고 있다. 즉 근지성 유형의 Cu(-Au)또는 Fe-Mo-W 광상에서는 탈가스화작용 이후에 나타나는 마그마수의 전형적인 특징을 보이는 반면, 다금속 광상과 귀금속 광상은 점이성 또는 원지성 유형으로 지표수(또는 순환수)의 혼입이 우세한 경향을 보인다.

Keywords

References

  1. Cerny, P. (1993) Rare-element granitic pegmatites: Part II, Regional to global environments and petrogenesis, In Sheahan, P.A. and Cherry, P. (Eds.) Ore deposit models. Geological Association of Canada, Geoscience Canada Reprint Series, v. 6, p. 49-62
  2. Chang, K.H., Filatova, N.E. and Park, S.O. (1999) Upper Mesozoic stratigraphic synthesis of Korean Peninsula. Econ. Env. Geol., v. 32, p. 353-363
  3. Cho, D. R. and Kwon, S. T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. J. Geol. Soc. Korea, v. 30, p. 41-61
  4. Choi, S.-G., Pak, S.J., Kim, C.S., Ryu, I.-C. and Wee, S.M. (2006a) The origin and evolution of mineralizing fluids in the Cretaceous Gyeongsang Basin, southeastern Korea. J. Geochem. Explor., v. 89, p. 61-64 https://doi.org/10.1016/j.gexplo.2005.12.009
  5. Choi, S.-G., Pak, S.J., Kim, S.W, Kim, C.S. and Oh, C.-W. (2006b) Mesozoic gold-silver mineralization in south Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Env. Geol., v. 39, p. 567-581
  6. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.M., Kim, C.S. and Park, M.E. (2005) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Review, v. 26, p. 115-135 https://doi.org/10.1016/j.oregeorev.2004.10.005
  7. Choi, S.H., Yun, S.T., and So, C.S. (1996) Fluid inclusion and stable isotopes studies of gold-and silver-bearing vein deposits, South Korea: Geochemical of a Tebearing Au-Ag-mineralization of the Imcheon mine. N. Jb. Miner. Abh., v. 1, p. 33-59
  8. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean Peninsula: A review and new view. Earth Sci. Review, v. 52, p. 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Cluzel, D., Jolivet, L. and Cadet, J.-P. (1991) Early middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea): A new insight on the Paleozoic buildup of east Asia. Tectonics, v. 10, p. 1130-1151 https://doi.org/10.1029/91TC00866
  10. Corbett, G.J. and Leach, T.M. (1998) Geothermal environment for southwest Pacific Rim gold-copper systems. In Corbett, G.J., Leach, T.M., (Eds.) Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Econ. Geol. Special Pub., no 6, p. 11-30
  11. Friedman, I. and O'Neil, J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest, In Fleischer, M. (ed.) Data of geochemistry: U.S. Geological Survey Professional Paper, 440-K, p. 1-12
  12. Goldfarb, R.J., Phillips, G.N. and Nokleberg, W.J. (1998) Tectonic setting of synorogenic gold deposits of the Pacific rim. Ore Geol. Review, v. 13, p. 185-218 https://doi.org/10.1016/S0169-1368(97)00018-8
  13. Hart, C.J.R, Mair, J.L., Goldfarb, R.J. and Groves, D.I. (2004) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. Trans. of the Royal Society of Edinburgh, Earth Sciences, v. 95, Part 1/2, p. 339-356 https://doi.org/10.1017/S0263593304000276
  14. Hedenquist, J.W. and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits, Nature, v. 370, p. 519-527 https://doi.org/10.1038/370519a0
  15. Heo, C.H., So, C.S., Youm, S.J. and Kim, S.H. (1999) Oxygen and hydrogen isotope study of the gold-silver mines in the Boseong-Jangheung area, Chollanamdo province, Korea. J. Korean Inst. Min. Energy Res. Eng., v. 36, p. 404-411
  16. Heo, C.H., Yun, S.T., So, C.S. and Choi, S.-G. (2001) Mesothermal gold mineralization at Seolhwa mine, Asan district: Oxygen and hydrogen isotope studies. J. Korean Inst. Min. Energy Res. Eng., v. 38, p. 405-415
  17. Hong, S.S. (2001) Implication for the emplacement depth of granites in the Yeongnam Massif, using the aluminum-in-hornblende barometry. J. Petro. Soc. Korea, v. 10, p. 36-55
  18. Hong, S.S. and Cho, D.R. (2003) Late mesozoic-Cenozoic tectonic evolution of Korea (3). KIGAM, KR-03-01, p. 455-526
  19. Jin, M.S., Lee, Y.S. and Ishihara, S. (2001) Granitoids and their magnetic susceptibility in South Korea. Resource Geol., v. 51, p. 189-204 https://doi.org/10.1111/j.1751-3928.2001.tb00091.x
  20. Jwa, Y.J. (1998) Temporal, spatial and geochemical discriminations of granitoids in south Korea. Resource Geol., v. 47, p. 273-284
  21. Jwa, Y.J. (2004) Possible source rocks of Mesozoic granites in South Korea: implications for crustal evolution in NE Asia. Trans. of the Royal Society of Edinburgh Earth Sciences, v. 95, p. 181-195 https://doi.org/10.1017/S0263593304000161
  22. Kim, K.H. and Cheong, H.R. (1999) Gas and solute compositions in quartz from some base-metal ore deposits, South Korea. Econ. Env. Geol., v. 32, p. 421-439
  23. Kim, K.H. and Nakai, N. (1988) Isotopic compositions of precipitations and groundwaters in South Korea. J. Geol. Soc. Korea, v. 24, p. 37-46
  24. Kim, K.H., Kim, O.J. and Chang, W.S. (1990) Stable isotope and fluid inclusion studies of the Mugug Au-Ag mineral deposits. Econ. Env. Geol., v. 23, p. 1-9
  25. Kim, K.H., Kim, O.J., Nakai, N. and Lee, H.J. (1988) Stable isotope studies of the Sangdong tungsten ore deposits, South Korea. Mining Geol., v. 38, p. 473-487
  26. Kim, K.H., Satake, H. and Mizutani, Y. (1992) Oxygen isotopic compositions of Mesozoic granitic rocks in South Korea. Mining Geol., v. 42, p. 311-322
  27. Kim, O.J. (1971) Metallogenic epochs and provinces of South Korea. J. Geol. Soc. Korea, v. 7, p. 37-59
  28. Kim, S.J., Lee, H.K., Yu, J.-H. and Chon H.-T. (1999) Gold-silver mineralization of the Mujeong mine, Korea. Econ. Env. Geol., v. 32, p. 237-245
  29. Kim, S.S. and Kim, J.J. (1995) Fluid inclusion and stable isotope studies of the Kwangyang gold-silver mineral deposits, the southern part of the Korean peninsula. J. Geol. Soc. Korea, v. 31, p. 431-443
  30. Koh, S.M., Tagaki, T., Kim, M.Y., Naito, K., Hong, S.S. and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geol., v. 50, p. 229-242 https://doi.org/10.1111/j.1751-3928.2000.tb00072.x
  31. Lang, J.R. and Baker, T. (2001) Intrusion-related-gold-systems: the present level of understanding, Min. Deposita, v. 36, p. 477-489 https://doi.org/10.1007/s001260100184
  32. Lang, J.R., Baker, T., Hart, C.J.R. and Mortensen, J.K. (2000) An exploration model for intrusion-related gold systems: Society of Econ. Geol. Newsletter, No. 40, p. 1-15
  33. Lee, D.S. (1987) Geology of Korea, Kyohaksa, Seoul, 514 p
  34. Lee, H.K., Yoo, B.C. and Kim, S.J. (1995) Au-Ag minerals and genetic environments from the Yeongdeog gold-silver deposits, Korea. Econ. Env. Geol., v. 28, p. 541-551
  35. Lee, J. I. and Kusakabe, M. (1998) Hydrogen and oxygen isotope compositions of the granitic rocks in the southern part of the Kyeongsang Basin, Korea, Geochem. J., v. 32, p. 253-256 https://doi.org/10.2343/geochemj.32.253
  36. Lee, S.Y., Choi, S.-G., So, C.S., Ryu, I.-C., Wee, S.-M. and Heo, C.-H. (2003) Base-metal mineralization in the Cretaceous Gyeongsang Basin and its genetic implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong metallogenic provinces. Econ. Env. Geol., v. 36, p. 257-268
  37. Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartzalbite-anorthite-water. Geochem. Cosmochim. Acta., v. 43, p. 1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  38. McConachie, B.A. and Dunster, J.N. (1996) Sequence stratigraphy of the Bowthorn block in the northern Mount Isa basin, Australia: Implications for the base metal mineralization process. Geology, v. 24, p. 155-158 https://doi.org/10.1130/0091-7613(1996)024<0155:SSOTBB>2.3.CO;2
  39. McCoy, D., Newberry, R.J., Layer, P., DiMarchi, J.J., Bakke, A., Masterman, J.S., and Minehane, D.L. (1997) Plutonic-related gold deposits of interior Alaska, In Goldfarb, R.J., and Miller, L.D. (Eds.) Mineral deposits of Alaska: Econ. Geol. Mono., v. 9, p. 191-241
  40. Moon, S.H., Park, H., Ripley, E.M. and Hur, S.D. (1998) Petrochemistry and stable isotopes of granites around the Eonyang rock crystal deposits. J. Geol. Soc. Korea, v. 34, p. 211-227
  41. Oh, M.S. (1999) Mineralization in Korea. In Cheong, C.H. (Ed.) Geology of Korea. Sigma Press, Seoul. p. 523-605
  42. Pak, S. J. Choi, S.-G. and Choi, S. H. (2004) Systematic mineralogy and chemistry of gold-silver vein deposits in the Taebaeksan district in Korea: Distal relatives of a porphyry system. Min. Mag., v. 68, p. 467-487 https://doi.org/10.1180/0026461046830199
  43. Pak, S.J., Choi, S.-G., Oh, C.W., Heo, C.H., Choi, S.H. and Kim, S.W. (2006) Genetic environment of the intrusion-related Yuryang Au-Te deposit in the Cheonan metallogenic province, Korea. Resource Geol., v. 56, p. 117-132 https://doi.org/10.1111/j.1751-3928.2006.tb00273.x
  44. Park, H.I., Chang, H.W. and Jin, M.S. (1988a) K-Ar ages of mineral deposits in the Taebaeg Mountain district. J. Korean Inst. Mining Geol., v. 21, p. 57-67
  45. Park, H.I., Chang, H.W. and Jin, M.S. (1988b) K-Ar ages of mineral deposits in the Gyeonggi massif. J. Korean Inst. Mining Geol., v. 21, p. 349-358
  46. Park, H.I., Choi, S.W., Chang, H.W. and Chae, D.H. (1985) Copper mineralization at Haman-Gunbuk mining district, Kyeongnam area. J. Korean Inst. Mining Geol., v. 18, p. 107-124
  47. Park, H.I., Choi, S.W., Chang, H.W. and Lee, M.S. (1983) Genesis of the copper deposits in Goseong district, Gyeongnam Area. J. Korean Inst. Mining Geol., v. 16, p. 135-147
  48. Park, Y.-R. and Ko, B. (2004) Oxygen and hydrogen isotopic compositions of the Hwacheon granite. J. Petro. Soc. Korea, v. 13, p. 214-223
  49. Ryu, I.-C., Choi, S.-G. and Wee, S.-M. (2006) An Inquiry into the formation and deformation of the Cretaceous Gyeongsang Basin, Southeastern Korea. Econ. Env. Geol., v. 39, p. 129-149
  50. Shelton, K.L. and So, C.S. (1992) A hydrogen and oxygen isotope study of the Sambo Pb-Zn-Barite mine, Republic of Korea. Mining Geol., v. 42, p. 353-359
  51. Shelton, K.L., So, C.S. and Chang, J.S. (1988) Gold-rich mesotherma1 vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Econ. Geol., v. 83, p. 1221-1237 https://doi.org/10.2113/gsecongeo.83.6.1221
  52. Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae Hwa Tungsten-Molybdenum mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ. Geol., v. 82, p. 471-481 https://doi.org/10.2113/gsecongeo.82.2.471
  53. Shimazaki, H., Lee, M.S., Tsusue, A. and Kaneda, H. (1986) Three epochs of gold mineralization in South Korea. Mining Geol., v. 36, p. 265-272
  54. Shin, S.C. and Chi, S.J. (1996) Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive isotopes and fission track II. KIGAM, Daejeon, KR-95C-11, p. 86
  55. Simmons, S.F. and Graham, I. (2003) Volcanic, Geothermal, Ore-forming Fluids: Rulers and Witnesses of Processes within the Earth. Econ. Geol. Special Pub., no. 10, 343 p
  56. So, C.S. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing hydrothermal vein deposits, Cheonan-Cheongyang- Nonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., v. 82, p. 987-1000 https://doi.org/10.2113/gsecongeo.82.4.987
  57. So, C.S. and Yun, S.T. (1992) Geochemistry and genesis of hydorthermal Au-Ag-Pb-Zn deposits in the Hwanggangri mineralized district, Republic of Korea. Econ. Geol., v. 87, p. 2056-2084 https://doi.org/10.2113/gsecongeo.87.8.2056
  58. So, C.S. and Yun, S.T. (1994) Origin and evolutioin of W-Mo-Producing fluids in a granitic hydorthermal system: Geochemical studies of quartz vein deposits around the Susan granite, Hwanggangri distirct, Republic of Korea. Econ. Geol., v. 89, p. 246-267 https://doi.org/10.2113/gsecongeo.89.2.246
  59. So, C.S. and Yun, S.T. (1996) Geochemical evidence of progressive meteoric water interaction in epithermal Au-Ag mineralization, Jeongju-Buan district. Republic of Korea. Econ. Geol., v. 91, p. 636-646 https://doi.org/10.2113/gsecongeo.91.3.636
  60. So, C.S. and Yun, S.T. (1997) Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea: Geochemistry of magmatic-hydrothermal gold deposition. Econ. Geol., v. 92, p. 60-80 https://doi.org/10.2113/gsecongeo.92.1.60
  61. So, C.S., Chi, S.J. and Choi, S.H. (1988) Geochemical studies on Au-Ag hydorthermal vein deposits, Republic of Korea: Jinan-Jeongeup mineralized area. J. Min. Pet. Econ. Geol., v. 83, p. 449-471 https://doi.org/10.2465/ganko.83.449
  62. So, C.S., Chi, S.J. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing vein deposits, Cheonan-Cheongyang-Nonsan mining deistirict, Republic of Korea: Nonsan area. N. Jb. Miner. Abh., v. 158, p. 47-65
  63. So, C.S., Choi, S.H., Lee, K.-Y. and Shelton, K.L. (1989) Geochemical studies of hydrothermal gold deposits, Republic of Korea: Yangpyeong-Weonju area. J. Korean. Inst. Mining. Geol., v. 22, p. 1-16
  64. So, C.S., Yun, S.T. and Koh, Y.-K. (1993a) Mineralogic, fluid inclusion and stable isotope evidence for the genesis of carbonate-hosted Pb-Zn(-Ag) orebodies of the Taebaek deposit, Republic of Korea. Econ. Geol., v. 88, p. 855-872 https://doi.org/10.2113/gsecongeo.88.4.855
  65. So, C.S., Yun, S.T. and Lee, J.-H. (1993b) Hydorhtemal W-Mo mineralziation of the Cheongyang mine, Republic of Korea: A fluid inclusion and stable isotope study. J. Min. Pet. Econ. Geol., v. 88, p. 63-82 https://doi.org/10.2465/ganko.88.63
  66. So, C.S., Yun, S.T., Choi, S.G., Koh, Y.K. and Chi, S.J. (1991) Gretaceous epithermal Au-Ag mineralization in the Muju-Yeongam distirict(Jeongju mineralized area), Republic of Korea: Galena-Lead and stable isotope studies. J. Geol. Soc. Korea. v. 27, p. 569-586
  67. So, C.S., Yun, S.T., Kwon, S.H. (1999) Gold-silver mineralization of the Jungheung and Okdong mines, Kwangyang area, Korea: Mineralogical and geochemical change in a cooling hydrothermal system. N. Jb. Miner. Abh., v. 174, p. 223-248
  68. Williams, P.J. and Barton, M.D. and Johnson, D.A. (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Economic Geology 100th Anniversary, p. 371-406
  69. Yang, D.Y. (1991) Mineralogy, petrology and geochemistry of the magnesian skarn-type magnetite deposits at the Shinyemi Mine, Republic of Korea. Ph.D thesis, Waseda Univ., Tokyo, Japan. 323 p
  70. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, fluid inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Econ. Env. Geol., v. 35, p. 299-316
  71. Yoo, B.C., Lee, H.K. and Kim, S.J. (2003) Stable isotope and fluid inclusioin studies of the Daebong gold-silver deposit, Republic of Korea. Econ. Env. Geol., v. 36, p. 391-405
  72. Yoo, B.C., Lee, H.K. and Kim, K.J. (2006a) Ore minerals and genetic environments from the Baekun gold-silver deposit, Republic of Korea. Econ. Env. Geol., v. 39, p. 9-25
  73. Yoo, B.C., Lee, H.K. and White, N.C. (2006b) Gold-bearing mesothermal veins from the Gubong mine, Cheongyang gold distirict, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol., v. 101, p. 883-901 https://doi.org/10.2113/gsecongeo.101.4.883
  74. Yun, S.T., So, C.S., Choi, S.H. and Heo, C.H. (2001) Hydrothermal bismuth mineralization of the Yucheon mine, South Korea: Oxygen and hydrogen isotope study. Geoscience J., v. 5, p. 243-250 https://doi.org/10.1007/BF02910307