• Title/Summary/Keyword: macro cell

Search Result 203, Processing Time 0.025 seconds

User Association and Base Station Sleep Management in Dense Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2058-2074
    • /
    • 2017
  • Dense Heterogeneous Cellular Networks(HCNs) offer a promising approach to meet the target of 1000x increase in aggregate data rates in 5G wireless communication systems. However how to best utilize the available radio resources at densely deployed small cells remains an open problem as those small cells are typically unplanned. In this paper we focus on balancing loads across macro cells and small cells by offloading users to small cells, as well as dynamically switching off underutilized small cells. We propose a joint user association and base station(BS) sleep mangement(UA-BSM) scheme that proactively offloads users to a fraction of the densely deployed small cells. We propose a heuristic algorithm that iteratively solves the user association problem and puts BSs with low loads into sleep. An interference relation matrix(IRM) is constructed to help us identify the candidate BSs that can be put into sleep. User associations are then aggregated to selected small cells that remain active. Simulation results show that our proposed approach achieves load balancing across macro and small cells and reduces the number of active BSs. Numerical results show user signal to interference ratio(SINR) can be improved by small cell sleep control.

Porous Electrode manufacture by catalyst powdering method for PAFC (촉매분말법에 의한 PAFC용 다공성 전극제작)

  • 김영우;이주성
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.194-199
    • /
    • 1993
  • Gas diffusion passes are introduced to catalyst layer so as to enlarge reaction region in cathode and anode and then improve electrode performances. The catalyst layer was manufactured with PTFE/carbon (none catalyst loaded) for gas diffusion and Pt/carbon (10 w/o Pt catalyst loaded) by varing the mixing ratio of (PTFE/carbon) to (Pt/carbon) by catalyst powdering method. The electrodes made by mixing Pt(10 w/o)/carbon powders and PTFE/carbon powders containing 60 w/o PTFE at the ratio of 7 : 3 showed the best electrode performances. It was known that by comparing the porosities to electrode performances the electrode performances were increased as both macro pore for gas diffusion and micro pore for electrolyte intrusion were formed much more. The platinum catalyst content in electrode was 0.2 mg/$\textrm{cm}^2$ and the PTFE content was 42 w/o. The electrode performance in unit cell was 220 ㎃/$\textrm{cm}^2$/0.7 V at operating temperature of 150$^{\circ}C$.

  • PDF

Finite thickness and tow phase shift effects on the mechanical behavior of plain weave textile composites (두께와 위상각의 변화가 평직복합재료 미세구조의 거동에 미치는 영향)

  • 우경식
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.11-24
    • /
    • 2000
  • In this paper, finite thickness and tow phase effects on the mechanical behavior were studied numerically for plain weave textile composites. Unit cell analysis based on a superposition method was employed to simulate uniaxial tensile loading condition and macro-element post-processor was used to reduce computer resource requirement. The effective moduli and micro-stress distribution were calculated for finite thick plain weave composites with phase shifts. Single layer and infinitely thick configurations were also considered for comparison.

  • PDF

Characteristics of Particle Laden Flows in Circular Microchannels (원형 마이크로채널 내의 입자가 부유된 유동의 특성)

  • Kim Y.W.;Jin S.W.;Yoo J.Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.85-88
    • /
    • 2005
  • Experimental study has been conducted to evaluate characteristics of particle laden flows at the ratio of channel diameter to particle diameter (B = 14.9, 21.6 and 55). Particle velocities and radial concentrations are obtained using a microscope Nd:YAG laser and cooled CCD camera. Results show that there are relative velocities between the fluid and the particles at B = 14.9. It is also observed that the particles are accumulated at r=$0.5\∼0.82R$, with R being tile tube radius, and particle migration occurs at small Reynolds number, by comparing with the results obtained in macro scale. This gives optimal factors for designing microfluidic channels for cell or Particle separation, particle focusing, and so on.

  • PDF

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

Elastic Properties of 2-Step Braided Composites (3차원 2-Step Braided 복합재료의 탄성 계수 예측)

  • Byun, Joon-Hyung
    • 연구논문집
    • /
    • s.23
    • /
    • pp.45-56
    • /
    • 1993
  • In order to acquire more comprehensive understanding of textile composites, the processing-microstructure-performance relationships for a variety of material systems, reinforcing schemes and processing technologies should be established. In this paper, emphasis is placed on the integrated analysis of three-dimensional (3-D) 2-step braided composites. The analysis includes the geometric model of unit cells, identification of key process parameters and processing windows due to limiting geometries of yarn jamming, and prediction of elastic constants of the composite. The coordinate transformation and averaging of stiffness and compliance constants are utilized in the prediction of elastic constants. Since there are several types of unit cells in the thickness and width directions of the composites, characterization of mechanical properties is based upon the macro-cell, which occupies the entire cross-section and the unit pitch length of the sample. The performance map demonstrates that a wide range of elastic properties can be achieved by varying the geometric and process parameters.

  • PDF

Prediction of Permeability for Multi-axial Braided Preform by Using CVFEM (검사체적 유한요소법을 이용한 다축 브레이드 프리폼의 투과율 계수 예측)

  • Y. S. Song;K. Chung;T. J. Kang;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.68-70
    • /
    • 2002
  • Prediction of 3-D permeability tensor for multi-axial preform is critical to model and design the manufacturing process of composites by considering resin flow through the multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for braided preform are predicted numerically. The flow analyses are calculated by using 3-D CVFEM(control volume finite element method) for macro-unit cells. To avoid checker-board pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytic solutions. Permeability of a braided preform is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Unlike other studies, the current study is based on more realistic unit cell and prediction of permeability is improved.

  • PDF

QoE Provisioning for Handovers in Mobile communication Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.25-32
    • /
    • 2017
  • In this paper we propose a resource management method which enables to guarantee the quality of experience (QoE) for handover in the overlaid macro-femtocell networks. How to cope with the resource demand of handover calls is necessary to efficiently support the movement of mobile terminals, the QoE degradation or the load control. We attempt to satisfy the QoE requirements of users and maximize the capacity of the system at the same time. In order to achieve this goal, this scheme divides the shared resources into two part for the movement of MT and QoE degradation, and allocates those resources with the competition between four types of handovers. Simulation results show that our scheme provides better performances than the conventional one with respect to the outage probability, data transmission throughput.

Simulation for hierarchical logic network (계층적 논리 회로의 시뮬레이션)

  • Lee, H.J.;Hur, Y.M.;Lee, J.H.;Park, H.J.;Park, D.G.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.579-581
    • /
    • 1988
  • This paper proposes the logic simulation for hierarchical logic network with function descriptor base data structure and algorithm on which a macro cell is considered as a logic elements. Function descriptor base data structure is useful when many logic elements of which type is same exist in a network, for it lessens the computer memory size used during the simulation. And the proposed simulation algorithm may improve the simulation speed.

  • PDF

The spectroscopic study of abnormal cells for the infrared femtosecond laser cell processing

  • Harink, Bjorn;Yoo, Byung-Heon;Lim, Hee-Won;Cho, Sung-Hak;Chang, Won-Seok;Kim, Jae-Gu;Whang, Kyung-Hyun
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.46-47
    • /
    • 2006
  • This study is about the spectroscopic characterization of abnormal cells in a macro to micro approach. In the first step a commercial UV-Vis apparatus is used, which is ultimately altered to the limits to decrease detection volume. In the ultimate stage an infrared femtosecond laser setup is used to measure on individual cells.

  • PDF