• 제목/요약/키워드: m-dimensional linear process

검색결과 33건 처리시간 0.028초

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESS GENERATED BY WEAKLY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa
    • Journal of the Korean Statistical Society
    • /
    • 제32권1호
    • /
    • pp.11-20
    • /
    • 2003
  • Let{Xt}be an m-dimensional linear process of the form (equation omitted), where{Zt}is a sequence of stationary m-dimensional weakly associated random vectors with EZt = O and E∥Zt∥$^2$$\infty$. We Prove central limit theorems for multivariate linear processes generated by weakly associated random vectors. Our results also imply a functional central limit theorem.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS

  • Ko, Mi-Hwa
    • 대한수학회논문집
    • /
    • 제21권4호
    • /
    • pp.779-786
    • /
    • 2006
  • Let $\mathbb{X}_t$ be an m-dimensional linear process defined by $\mathbb{X}_t=\sum{_{j=0}^\infty}\;A_j\;\mathbb{Z}_{t-j}$, t = 1, 2, $\ldots$, where $\mathbb{Z}_t$ is a sequence of m-dimensional random vectors with mean 0 : $m\times1$ and positive definite covariance matrix $\Gamma:m{\times}m$ and $\{A_j\}$ is a sequence of coefficient matrices. In this paper we give sufficient conditions so that $\sum{_{t=1}^{[ns]}\mathbb{X}_t$ (properly normalized) converges weakly to Wiener measure if the corresponding result for $\sum{_{t=1}^{[ns]}\mathbb{Z}_t$ is true.

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • 김태성;백종일
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MULTIVARIATE LINEAR PROCESS WITH POSITIVELY DEPENDENT RANDOM VECTORS

  • KO, MI-HWA;KIM, TAE-SUNG;KIM, HYUN-CHULL
    • 호남수학학술지
    • /
    • 제27권2호
    • /
    • pp.301-315
    • /
    • 2005
  • Let $\{A_u,\;u=0,\;1,\;2,\;{\cdots}\}$ be a sequence of coefficient matrices such that ${\sum}_{u=0}^{\infty}{\parallel}A_u{\parallel}<{\infty}$ and ${\sum}_{u=0}^{\infty}\;A_u{\neq}O_{m{\times}m}$, where for any $m{\times}m(m{\geq}1)$, matrix $A=(a_{ij})$, ${\parallel}A{\parallel}={\sum}_{i=1}^m{\sum}_{j=1}^m{\mid}a_{ij}{\mid}$ and $O_{m{\times}m}$ denotes the $m{\times}m$ zero matrix. In this paper, a functional central limit theorem is derived for a stationary m-dimensional linear process ${\mathbb{X}}_t$ of the form ${\mathbb{X}_t}={\sum}_{u=0}^{\infty}A_u{\mathbb{Z}_{t-u}}$, where $\{\mathbb{Z}_t,\;t=0,\;{\pm}1,\;{\pm}2,\;{\cdots}\}$ is a stationary sequence of linearly positive quadrant dependent m-dimensional random vectors with $E({\mathbb{Z}_t})={{\mathbb{O}}$ and $E{\parallel}{\mathbb{Z}_t}{\parallel}^2<{\infty}$.

  • PDF

A Functional Central Limit Theorem for the Multivariate Linear Process Generated by Negatively Associated Random Vectors

  • Kim, Tae-Sung;Seo, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.615-623
    • /
    • 2001
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form (no abstract. see full-text) where{ $Z_{t}$} is a sequence of strictly stationary m-dimensional negatively associated random vectors with E $Z_{t}$=O and E∥ $Z_{t}$$^2$<$\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (no abstract. see full-text) and (no abstract. see full-text).text).).

  • PDF

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESSES GENERATED BY NEGATIVELY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Ro, Hyeong-Hee
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권2호
    • /
    • pp.139-147
    • /
    • 2004
  • Let {<$\mathds{X}_t$} be an m-dimensional linear process of the form $\mathbb{X}_t\;=\sumA,\mathbb{Z}_{t-j}$ where {$\mathbb{Z}_t$} is a sequence of stationary m-dimensional negatively associated random vectors with $\mathbb{EZ}_t$ = $\mathbb{O}$ and $\mathbb{E}\parallel\mathbb{Z}_t\parallel^2$ < $\infty$. In this paper we prove the central limit theorems for multivariate linear processes generated by negatively associated random vectors.

  • PDF

ANALYTIC TREATMENT FOR GENERALIZED (m + 1)-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • AZ-ZO'BI, EMAD A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.289-294
    • /
    • 2018
  • In this work, a recently developed semi-analytic technique, so called the residual power series method, is generalized to process higher-dimensional linear and nonlinear partial differential equations. The solutions obtained takes a form of an infinite power series which can, in turn, be expressed in a closed exact form. The results reveal that the proposed generalization is very effective, convenient and simple. This is achieved by handling the (m+1)-dimensional Burgers equation.

ON A CENTRAL LIMIT THEOREM FOR A STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM VECTORS

  • Kim, Tae-Sung
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.119-126
    • /
    • 2002
  • For a stationary multivariate linear process of the form X$_{t}$ = (equation omitted), where {Z$_{t}$ : t = 0$\pm$1$\pm$2ㆍㆍㆍ} is a sequence of stationary linearly positive quadrant dependent m-dimensional random vectors with E(Z$_{t}$) = O and E∥Z$_{t}$$^2$< $\infty$, we prove a central limit theorem.theorem.

선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록 (Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features)

  • 김의명;서홍덕
    • 한국측량학회지
    • /
    • 제38권3호
    • /
    • pp.175-185
    • /
    • 2020
  • 3차원 등록은 서로 다른 좌표계를 갖거나 좌표계가 없는 데이터를 기준 좌표계로 일치시키는 과정으로 사진측량의 절대표정, 정밀도로지도 제작을 위한 데이터 결합 등 다양한 분야에서 사용되고 있다. 3차원 등록은 점을 이용하는 방법과 선형을 이용하는 방법으로 구분이 된다. 점을 이용할 경우 서로 다른 공간해상도를 갖는 경우 동일한 공액점을 찾기 어려운 문제가 있다. 이에 반해 선형을 이용할 경우 공간해상도가 다른 경우 뿐만 아니라 점군 형태의 데이터에서 시작점과 끝점이 같지 않은 공액의 선형을 이용하여 3차원 등록이 가능한 장점이 있다. 본 연구에서는 선형을 이용하여 3차원 등록을 수행하기 위해서 쿼터니언을 이용하여 두 데이터 간의 3차원 회전각을 결정한 후 축척과 3차원 이동량을 결정하는 방법을 제안하였다. 제안한 방법의 검증을 위해 실내에서 구축한 선형과 실외 환경의 지상 모바일매핑시스템을 통해 취득한 선형을 이용하여 3차원 등록을 각각 수행하였다. 실험결과, 실내 데이터를 이용한 경우 축척을 고정한 경우와 고정하지 않은 경우 평균제곱근오차는 각각 0.001054m와 0.000936m로 나타났다. 실외 데이터를 이용하여 500m 구간에서 3차원 변환을 수행한 결과 6개의 선형을 이용하였을 경우 평균 제곱근오차는 0.09412m로 나타났으며 정밀도로지도 제작을 위한 정확도를 만족하는 것을 알 수 있었다. 또한, 선형의 개수를 변화시킨 실험에서 9개 이상의 선형을 이용할 경우도 평균제곱근오차의 변화가 크지 않은 것을 통해 높은 정확도의 3차원 변환을 위해 9개의 선형으로도 충분한 것을 알 수 있었다.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR LINEAR RANDOM FIELD GENERATED BY NEGATIVELY ASSOCIATED RANDOM FIELD

  • Ryu, Dae-Hee
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.507-517
    • /
    • 2009
  • We prove a functional central limit theorem for a linear random field generated by negatively associated multi-dimensional random variables. Under finite second moment condition we extend the result in Kim, Ko and Choi[Kim,T.S, Ko,M.H and Choi, Y.K.,2008. The invariance principle for linear multi-parameter stochastic processes generated by associated fields. Statist. Probab. Lett. 78, 3298-3303] to the negatively associated case.

  • PDF