• Title/Summary/Keyword: m Urbanization

Search Result 150, Processing Time 0.036 seconds

Comparing Connectivity in Forest Networks of Seven Metropolitan Cities of South Korea (국내 7대 광역시 산림 연결성 비교 분석)

  • Kang, Wanmo;Kim, Jiwon;Park, Chan-Ryul;Sung, Joo Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.93-102
    • /
    • 2014
  • This quantitative research aims to examine the connectivity of forest networks in seven metropolitan cities of South Korea using a graph-theoretical approach. We first estimated an overall network connectivity at multi-scales (i.e., dispersal distances), ranging from 100 m to 20 km, and quantified the contribution of small forest patches (less than 10 ha) to the overall network connectivity by comparing networks according to the presence and absence of small ones. As a result, the cities were divided into two groups depending on the network connectivity; one group of cities with high connectivity such as Daegu, Daejeon, and Ulsan and the other group of cities with low connectivity including Gwangju, Busan, Seoul, and Incheon. The result showed that small forest patches, especially in the cities with low connectivity, played a key role as stepping stones that connect large forested patches, thereby contributing to maintaining connectivity. This study also suggests that large and well-connected forest areas may be the key factor to preserve the connectivity in the cities with high connectivity, while the cites with low connectivity are in need of some complementary strategies. Through the study, we suggest that the creation of new forest patches in the areas where a gap in connectivity presents is needed in order to improve connectivity; and that the conservation of the existing small forest patches is essential in order to maintain the current connectivity level.

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Analysis of Hydrological Impact for Long-Term Land Cover Change Using the WMS HEC-1 Model in the Upstream Watershed of Pyeongtaek Gauging Station of Anseong-cheon (WMS HEC-1을 이용한 안성천 평택수위관측소 상류유역의 수문 경년변화 분석)

  • Kim, Seong-Joon;Park, Geun-Ae;Jung, In-Kyun;Kwon, Hyung-Joong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.609-621
    • /
    • 2003
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change by gradual urbanization of upstream watershed of Pyeongtaek gauging station of Anseong -cheon. WMS HEC-1 was adopted, and DEM with 200$\times$200m resolution and hydrologic soil group from 1:50,000 soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. The watershed showed a trend that forest & paddy areas decreased and urban/residential area gradually increased for the period of 14 years. The model was calibrated at 2 locations (Pyeongtaek and Gongdo) by comparing observed with simulated discharge results for 5 summer storm events from 1998 to 2001. The watershed average CN values varied from 61.7 to 62.3 for the 4 selected years. To identify the impact of streamflow by temporal area change of a target land use, a simple evaluation method that the CN values of areas except the target land use are unified as one representative CN value was suggested. By applying the method, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

Development of Grid based Inundation Analysis Model (GIAM) (격자기반 침수해석모델(GIAM) 개발)

  • Lee, Byong Ju;Yoon, Seong Sim
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.181-190
    • /
    • 2017
  • Population congestion and increasing porosity caused by urbanization and increasing rainfall intensity are the main reasons for urban inundation damage. In order to reduce the damage to urban flooding, it is necessary to take a inundation analysis model that can be considered the topographic impact (i.e., building and road) and simulate the detailed inundation areas. In this study, Grid based Inundation Analysis Model (GIAM) is developed using a two-dimensional shallow water equations. The study area is Gangnam basin, with a surface area of $7.4km^2$, which includes 5 drainage areas such as Nonhyun, Yeoksam, Seocho 1, 2, and 3. EPA SWMM5 is used for simulating the overflows at each manhole. GIAM model is constructed to allow for simulating a inundation area with 6 m grid size. The inundation analysis is conducted in two heavy rainfall events (Sep. 21, 2010 and July 27, 2011) for the model evaluation. The accuracy of the simulated inundation area is calculated 0.61 and 0.57 at POD index using the historical flooded area report. The developed model will be used as a tool for analyzing the flood prone areas based on rainfall scenario, and a tool for predicting the detailed inundation area in the real-time.

Analysis of Land Cover Change in the Waterfront Area of Taehwa River using Hyperspectral Image Information (초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석)

  • KIM, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • Land cover maps are used in various fields in urban expansion and development. This study analyzed the amount of land cover change over time using multi-sensor information, focusing on the waterfront area of the Taehwa River. In order to apply high-accuracy aerial hyperspectral images, patterns with Field-spectral were reviewed and compared with time series Digital map. The hyperspectral image was set as 13 land cover grades, and the time series digital map was classified into 7 and the waterfront area was classified into 5-6 grades and analyzed. As a result of analysis of the change in land cover of the digital map from the 1990s to 2010, it was found that forest areas were rapidly decreasing and Farmland and grassland were becoming urban. As for the land cover change(2010~2019) in the waterfront area(set 500m) analyzed through hyperspectral images, it was found that Farmland(1.4㎢), Forest(1.0㎢), and grassland (0.8㎢) were converted into urbanized and dried areas, and urbanization was accelerating around the Taehwa River waterfront. Recently, a lot of research has been conducted on the production of land cover maps using high-precision satellite images and aerial hyperspectral images, so it is expected that more detailed and precise land cover maps can be produced and utilized.

The effect of Temperature Reduction of Green Roof using Rainwater Storage Tank (빗물 저류 시스템을 활용한 옥상 녹화의 온도 저감 효과)

  • Yun, Seok-Hwan;Kim, Eun-Sub;Piao, Zheng-Gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Kang, Han-Min;Ham, Eun-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.109-119
    • /
    • 2021
  • Thermal environment of city is getting worse due to severe urban heat island caused by climate change and urbanization. Green roof improves the urban thermal environment and save the cooling energy in buildings. This study presented a green roof combined with a storage system that stores rain-water and supplies water through a wick and evaluated the temperature reduction effect as surface temperature and amount of evapotranspiration. For about a week, the surface temperature using a infrared thermal imager and the evapotranspiration by recording change of module weight were measured at intervals of 30 minutes from sunrise to sunset. The results show that the mean surface temperature of the green roof was 15.4 degrees lower than that of the non-green roof from 12:00 P.M. to 14:00 P.M. There was no significant difference between mean surface temperature of green roof with and without storage system immediately after rain, but more than a week after rain, there was a difference with average of 2.49 degrees and maximum of 4.72 degrees. The difference in daily amount of evapotranspiration was measured to be 1.66 times on average. As drought stress increased over time, the difference in daily amount of evapotranspiration and surface temperature between with/without storage system increased simultaneously. The results of the study show a more excellent cooling effect of green roof combined with the rainwater storage system.

Comparisons between a Forest Road with a Coniferous Plantation and Distributed Vegetation on the Edge of a Forest, and Reclaimed Soil Seed Bank (식재 침엽수 숲길과 숲 가장자리 분포 식생 및 매토종자 비교)

  • Joe, Sun-Hee;Kim, Kee-Dae
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.4
    • /
    • pp.409-419
    • /
    • 2008
  • The purpose of this study is to compare the differences in aboveground flora and underground flora between a forest road and a forest edge and to clarify each characteristic through ecological approach to a forest road. The study site was the forest planted with Pinus koraiensis and Abies holophylla, and located at an altitude of 45m($36^{\circ}36'23''N127^{\circ}21'45''E$). The width of the forest road is 3.2m. This research set the forest edge within the areas 5m away from the forest road and also conducted a survey on vegetation 5 times from september 2006 to August 2007. In addition, it installed thirty six quadrats to make an analysis of reclaimed soil seed bank. Soil amounting to 600$cm^3$ was collected from each quadrat using soil samplers(100$cm^3$),which was preserved in low temperature refrigeration for a month. Soil was thinly strewed evenly on trays and watered every four or five days; then, this research did experiment for six months until no more germination took place. Through this process, this research identified species and counted the number of germinating individuals by using emerging seedlings. The research result showed that on the whole, the similarity index between aboveground flora and underground flora was low. The correlation coefficient between the aboveground flora vegetations both on the forest road and on its edge was found to be 0.36, showing a correlation with each other(p<0.05). On the other hand, the correlation coefficient between underground flora vegetations through the analysis of reclaimed soil seed bank was 0.20, showing no correlation with each other(p>0.05). As the survey result of naturalized plants, there existed 7 species of naturalized plants on the forest road in case woody plants were included, showing 11.11% naturalization rate and 2.61% urbanization index(UI). On the other hand in case woody plants were not included among the naturalized plants, the naturalization rate on the forest road was 12.50% while the naturalization rate on the edge of the forest was 9.09%.

Vegetation Structure Characteristics and Management Plan of Mulgeun Fish Shelter Forest in the Southern Coast (남해안 물건리 방조어부림의 식생구조 특성 및 관리방안)

  • Lee, Soo-Dong;Kim, Mi-Jeong;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • The purpose of this study is to present efficient methods of preserving and managing the fish shelter forest in Mulgun-ri on the southern coast of Korea on the basis of its humanistic, sociological and ecological characteristics. The study object is Korean natural monument No. 150, which is presumed to have been forested by descendants of Jeonju Lee Family who settled there, and village rituals are held every October to pray for the peace of the village. The forest is managed by Namhae-gun as a historical and cultural resource as well as its disaster-preventing, economic, and environmental and ecological functions. The linear form of the area is $23,962.6m^2$ and farmland(48.5%) and urbanization area(38.2%) are extensively located in its periphery area. Actual vegetation was sub-classified into three types of land according to use pressure and whether or not damage was done: land where its stratification was formed; land where it was restored, and the land where it was damaged. Plant communities were sub-classified into Aphananthe aspera community(I) and Zelkova serrata community(II) which had a low use pressure; Z. serrata-Chionanthus retusa-A. aspera community(III) and A. aspera-Z. serrata community(IV) which had a high use pressure; and Celtis sinensis-A. aspera community(V) whose underlayer was damaged by use. Fragmentation of the forest is under way and its inside vegetation growth is hampered due to the installation of traffic and resting facilities such as the through roads costal roads, wooden-deck walkways, parking lots, washstands, etc. As a restoration management plan for this, the following were required: an establishment of preferred restoration area; a selection of restoration vegetation species; and an appropriate restoration method. The damaged area($7,868.2m^2$) will have to be set up as the preferred restoration area; seedlings of restored vegetation species should be raised with dominant species within the forest(i.e., Z. serrata, A. aspera, C. sinensis, and C. retusa) as their 'mother trees' for the benefit of for the next-generation forest; and sub-tree and shrub layer should be complementarily planted with 5 and 115 trees(unit $100m^2$) respectively to facilitate the formation of a multi-layered vegetation structure. In addition, resting facilities scattered inside the forest should be demolished; and indiscriminate use of them should be controlled; management and monitoring should be carried out so that the area can be preserved and restored as a deciduous broad-leaved forest.

A Field Survey and Analysis of Ground Water Level and Soil Moisture in A Riparian Vegetation Zone (식생사주 역에서 지하수위와 토양수분의 현장 조사·분석)

  • Woo, Hyo-Seop;Chung, Sang-Joon;Cho, Hyung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.797-807
    • /
    • 2011
  • Phenomenon of vegetation recruitment on the sand bar is drastically rising in the streams and rivers in Korea. In the 1960s prior to industrialization and urbanization, most of the streams were consisted of sands and gravels, what we call, 'White River'. Owing to dam construction, stream maintenance, etc. carried out since the '70s, the characteristic of flow duration and sediment transport have been disturbed resulting in the abundance of vegetation in the waterfront, that is, 'Green River' is under progress. This study purposed to identify the correlation among water level, water temperature, rainfall, soil moisture and soil texture out of the factors which give an effect on the vegetation recruitment on the sand bar of unregulated stream. To this purpose, this study selected the downstream of Naeseong Stream, one of sand rivers in Korea, as the river section for test and conducted the monitoring and analysis for 289 days. In addition, this study analyzed the aerial photos taken from 1970 to 2009 in order to identify the aged change in vegetation from the past to the present. The range of the tested river section was 361 m in transverse length and about 2 km in longitudinal length. According to the survey analysis, the tested river section in Naeseong Stream was a gaining river showing the higher underground-water level by 20~30 m compared to Stream water level. The difference in the underground water temperature was less than $5^{\circ}C$ by day and season and the Stream temperature did not fall to $10^{\circ}C$ and less from May when the vegetation germination begins in earnest. The impact factor on soil moisture was the underground water level in the lower layer and the rainfall in the upper layer and it was found that all the upper and lower layer were influenced by soil particle size. The soil from surface to 1 m-underground out of 6 soil moisture-measured points was sand with the $D_{50}$ size of 0.07~1.37 mm and it's assumed that the capillary height possible in the particle size would reach around 14~43 cm. On the other hand, according to the result of space analysis on the tested river section of unregulated stream for 40 years, it was found that the artificial disturbance and drought promoted the vegetation recruitment and the flooding resulted in the frequency extinction of vegetation communities. Even though the small and large scales of recruitment and extinction in vegetation have been repeated since 1970, the present vegetation area increased clearly compared to the past. It's found that the vegetation area is gradually increasing over time.

An Analysis of Suitable site of Constructed Wetland using High Resolution Satellite Image and GIS in Kyoung-An Stream (고해상도 위성영상과 GIS를 이용한 인공습지 적지 분석 -경안천을 대상으로-)

  • Koh, Chang-Hwan;Jin, Do;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • Various human activities such as the Urbanization and Industrialization are estimated the main factors to pollute the stream. Now days, numerous studies are carried out for managing non-point sources which have un-effect on water quality of streams by land-use and livestock. In case of Korea, a matter of concern that the management of Pal dang reservoir - the main water resources of the national capital region - has been occurring. Especially, large-scale constructed-wetlands are planned and constructed at the end of Kyoung-an stream. Additionally a lot of sewage treatment plants are newly installed and extended in this watershed. According to these efforts, water quality of Kyoung-an stream is predicted that would be improved. But the more detail and scientific analysis should be carried out for the water quality improvement, because, existing water quality improvement projects are not involved to analyze root of water quality deterioration and improvement plans. Therefore, this study aims to select suitable areas for constructed-wetlands and to calculate size of the constructed-wetlands for water quality improvement in Kyoung-an stream through the geographical pollutant distribution analysis and land-use pattern analysis by high resolution satellite image and suitable area analysis of constructed-wetlands by GIS(Geographic information system). The progress of this study is (1) to select maximum pollutant loaded area by geographical analysis based on water quality data, (2) to analyze land-use patterns using high resolution satellite image, (3) to select suitable areas of constructed-wetlands, (4) to calculate area and volume of chosen constructed-wetlands using GIS. Basically, sizes of constructed-wetlands are induced through the constructed-wetlands design index based on treatment ratio(provided by Korea Water Resources Corporation). As a result of this study, two areas are selected to construct constructed-wetlands. One of the area was $127,586m^2$ near by Yong-in sewage treatment plant, and the other area was $1,647m^2$ near by Ju-buk stream and Dae-dae stream.

  • PDF