DOI QR코드

DOI QR Code

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas

서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석

  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jang, Min (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Yi, Chaeyeon (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Zo, Il-Sung (Research Institute of Radiation & Satellite, Gangneung-Wonju National University) ;
  • Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Park, Moon-Soo (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Choi, Young-Jean (Weather Information Service Engine, Hankuk University of Foreign Studies)
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 장민 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 이채연 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 조일성 (강릉원주대학교 복사위성연구소) ;
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 박문수 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 최영진 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2015.12.10
  • Accepted : 2016.01.15
  • Published : 2016.03.31

Abstract

In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Keywords

References

  1. Andre, J. C., and C. Blondin, 1986: On the effective roughness length for use in numerical three-dimensional models. Boundary-Lay. Meteorol., 35, 231-245. https://doi.org/10.1007/BF00123642
  2. Barlag, A. B., and W. Kuttler, 1991: The significance of country breezes for urban planning. Energy Build., 15, 291-297.
  3. Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteorol., 7, 575-582. https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2
  4. Bottema, M., 1996: Roughness parameters over regular rough surfaces: Experimental requirements and model validation. J. Wind Eng. Ind. Aerod., 64, 249-265. https://doi.org/10.1016/S0167-6105(96)00062-1
  5. Cao, M., and Z. Lin, 2014: Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation. J. Appl. Math., 2014, Article ID 267683, doi:10.1155/2014/267683.
  6. Chen, F., S. Miao, M. Tewari, J. Bao, and H. Kusaka, 2011: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, doi:10.1029/2010JD015533.
  7. Dong, Z., X. Liu, H. Wang, and X. Wang, 2003: Aeolian sand transport: a wind tunnel model. Sediment. Geol., 161, 71-83. https://doi.org/10.1016/S0037-0738(02)00396-2
  8. Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2011. The operational sea surface temperature and sea ice analysis (OSTIA). Remote Sens. Environ., 116, 140-158, doi:10.1016/j.rse.2010.10.017.
  9. Gal, T., and Z. Sumeghy, 2007: Mapping the roughness parameters in a large urban area for urban climate applications. Acta Clim. ET Chorol., 2007, 40-41.
  10. Grimmond, C. S. B., and C. Souch, 1994: Surface description for urban climate studies: a GIS based methodology. Geocarto Int., 9, 47-59. https://doi.org/10.1080/10106049409354439
  11. Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. Clim., 38, 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
  12. Ha, K. J., A. S. Suh, and H. S. Chung, 1998: The application of satellite data to land surface process parameterization in ARPS model. J. Korean Assoc. Geog. Inform. Stud., 1, 99-108.
  13. Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteorol. Clim., 49, 889-901. https://doi.org/10.1175/2009JAMC2195.1
  14. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  15. Hu, X., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Clim., 49, 1831-1844. https://doi.org/10.1175/2010JAMC2432.1
  16. Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 61 pp.
  17. Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteorol. Clim., 46, 1067-1079. https://doi.org/10.1175/JAM2500.1
  18. Landsberg, H. E., 1981: The Urban Climate. Academic Press, 285 pp.
  19. Lee, Y.-H., and S.-U. Park, 1997: Modification of boundary layer by a change of surface roughness. J. Korean Meteorol. Soc., 33, 445-456.
  20. Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J. Appl. Meteorol. Clim., 51, 219-241. https://doi.org/10.1175/JAMC-D-11-038.1
  21. Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
  22. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163-187.
  23. Ng, E., C. Yuan, L. Chen, C. Ren, and J. C. Fung, 2011: Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape. Urban Plan., 101, 59-74. https://doi.org/10.1016/j.landurbplan.2011.01.004
  24. Oke, T. R., 1987: Boundary Layer Climates. Methuen, Inc., 435 pp.
  25. Park, S. H., J. B. Jee, and C. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over seoul metropolitan and surrounding areas. Atmosphere, 25, 309-322. https://doi.org/10.14191/Atmos.2015.25.2.309
  26. Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Clim., 46, 9, 1383-1395. https://doi.org/10.1175/JAM2539.1
  27. Priestnall, G., J. Jaafar, and A. Duncan, 2000: Extracting urban features from LiDAR digital surface models. Computers, Environment and Urban Systems, 24, 65-78. https://doi.org/10.1016/S0198-9715(99)00047-2
  28. Ratti, C., and P. Richens, 1999: Urban texture analysis with image processing techniques. In Computers in Building. Springer, 49-64 pp.
  29. Ratti, C., S. Di Sabatino, and R. Bitter, 2006: Urban texture analysis with image processing techniques: wind and dispersion. Theoretical and Appl. Clim., 84, 77-99. https://doi.org/10.1007/s00704-005-0146-z
  30. Raupach, M., 1992: Drag and drag partition on rough surfaces. Boundary-Lay. Meteorol., 60, 375-395. https://doi.org/10.1007/BF00155203
  31. Reijmer, C. H., E. van Meijgaard, and M. R. van den Broeke, 2004: Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Boundary-Lay. Meteorol., 111, 313-337. https://doi.org/10.1023/B:BOUN.0000016470.23403.ca
  32. Ryu, Y. H., J. J. Baik, K. H. Kwak, S. Kim, and N. Moon, 2013: Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. Atmos. Chem. Phys., 13, 2177-2194. https://doi.org/10.5194/acp-13-2177-2013
  33. Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteorol. Clim., 50, 1107-1128. https://doi.org/10.1175/2010JAMC2538.1
  34. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, 113 pp.
  35. Steiniger, S., T. Lange, D. Burghardt, and R. Weibel, 2008: An approach for the classification of urban building structures based on discriminant analysis techniques. Transactions in GIS, 12, 31-59.
  36. Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J. Appl. Meteorol., 27, 1036-1054. https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2
  37. Voogt, J. A., and T. R. Oke, 1997: Complete urban surface temperatures. J. Appl. Meteorol., 36, 1117-1132. https://doi.org/10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2
  38. Vukovich, F. M., 1971: Theoretical analysis of the effect of mean wind and stability on a heat island circulation characteristic of an urban complex. Mon. Weather Rev., 99, 919-926. https://doi.org/10.1175/1520-0493(1971)099<0919:TAOTEO>2.3.CO;2
  39. Wang, W., C. Bruyere, M. Duda, J. Dudhia, D. Gill, H.-C. Lin, J. Michalakes, S. Rizvi, and X. Zhang, 2010: Weather Research & Forecasting, ARW Version 3 Modeling System User's Guide. Mesoscale and Microscale Meteorology Division, Boulder, Co, Natl. Center. Atmos. Res., 350 pp.
  40. Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteorol., 40, 192-209. https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2
  41. Yi, C., T. H. Kwon, M. S. Park, Y. J. Choi, and S. M. Ahn, 2015: A study on the roughness length spatial distribution in relation to the seoul building morphology. Atmosphere, 25, 339-351. https://doi.org/10.14191/Atmos.2015.25.2.339
  42. Yoo, J., J. K. Hong, H. Kwon, J. H. Lim, and J. Kim, 2010: On estimation of zero plane displacement from singlelevel wind measurement above a coniferous forest. Korean Agric. Forest Meteorol., 12, 45-62. https://doi.org/10.5532/KJAFM.2010.12.1.045

Cited by

  1. Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation vol.26, pp.3, 2016, https://doi.org/10.14191/Atmos.2016.26.3.445
  2. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea vol.10, pp.4, 2017, https://doi.org/10.5194/amt-10-1575-2017
  3. Evaluating the impacts of updated aerodynamic roughness length in the WRF/Chem model over Pearl River Delta pp.1436-5065, 2019, https://doi.org/10.1007/s00703-019-00698-1