• Title/Summary/Keyword: low light intensity

Search Result 407, Processing Time 0.028 seconds

PHYSIOLOGICAL RESPONSE OF PANAX GINSENG TO LIGHT

  • Park Hoon
    • Proceedings of the Ginseng society Conference
    • /
    • 1980.09a
    • /
    • pp.151-170
    • /
    • 1980
  • Physiological response of Panax ginseng var. atropurpureacaulo (purple stem variety, Pg) to light was reviewed through old literatures and recent experiments. Canopy structure, growth, pigment, leaf anatomy, disease occurence, transpiration, photosynthesis (PS), leaf saponin, photoperiodism and nutrient uptake were concerned. P. ginseng var. xanthocarpus (yellow berry variety, Px) and Panax quinquefolius(Pq) were compared with Pg if possible. Compensation point(Cp) increased with increase of light and ranged from 110 to 150 at $20^{\circ}C$ but from 140 to 220 at $30^{\circ}C$ with 4 to 15 Klux indicating occurence of light and temperature-dependent high photorespiration. Characteristics of Korea ginseng to hate high temperature was well accordance with an observation 2000 years ago. Korea ginseng showed lower Cp and appeared to be more tolerant to high light intensity and temperature than American sheng although the latter showed greater PS, stomata frequency and conductance, chlorophyll and carotenoids. Px showed lower PS than Pg probably due to higher Cp. Total leaf saponin was higher in leaves grown under high light. Ratio or diol saponin and triol saponin(PT/PD) decreased with increase of light intensity during growing mainly due to decrease of ginsenoside $Rg_1$ but increase of ginsenoside Rd. Leaves of Pg and Px had $Rg_1$ but no $Rb_3$ which was only found as much as $20\%$ of total in Pq leaves, and decreased with increase of light intensity. Re increased in Pg and Px but decreased in Pq with increase of light. PT/PD in leaf ranged 1.0-1.5 in Pg and Px but around 0.5 in Pq. Korea ginseng has Yang characteristics(tolerant to high light and temperature), cultured under Eum(shade) condition and long been used for Yang efficacy (to build up energy) while Pq was quite contrary. Traditional low light $intensity(3-8\%)$ for Korea ginseng culture appeared to be strongly related to historical unique quality. Effect of light quality and photoperiodism was not well known. Experiences are long but scientific knowledge is short for production and quality assessment of ginseng. Recent scientific knowledge of ginseng should learn wisdom from old experiences.

  • PDF

The improvement of productivity of a photosynthetic purple bacterium, Rhodobacter sphaeroides by manipulating the photosynthetic apparatus (광합성 기구 조작을 통한 비유황 자색 광합성 세균, Rhodobacter sphaeroides의 생산성 증대)

  • Kim, Nak-Jong;Lee, Cheol-Gyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.189-192
    • /
    • 2000
  • The objective of this study was to investigate the effect of high content of light-absorbing pigments on overall photosynthetic efficiency in high density microalgal cultures. The light harvesting complex II (LHC II) regulating gene of Rhodobacter sphaeroides, photosynthetic purple bacterium, was removed to construct a mutant strain that had less pigment content. The mutant and wild type strains were cultured under various light intensity by adjusting the distance from the light source. The productivity of the mutant strain was higher at high light intensity (over 118 ${\mu}E/m^2/s$) compared with one of the wild type , and was lower at low light intensity (34 ${\mu}E/m^2/s$). Especially, the concentration of LHC II mutant strain was 56% higher at 118 ${\mu}E/m^2/s$. The reduction of per cell pigment contents in the mutant strain lessened the degree of the mutual shading and thus enhanced the overall photosynthetic efficiency.

  • PDF

A Study on the Relationship between Light Environment and Visitors' Behavior in a Museum - Focus on the Interpretation of Tracking Score and Tracking Frequency with Intensity of Illumination - (박물관 빛 환경과 관람행태의 상관관계에 관한 연구 - 조도에 의한 관람확률과 관람빈도의 해석을 중심으로 -)

  • Lee, Mi-Youn;Jung, Sung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.4
    • /
    • pp.82-89
    • /
    • 2010
  • The studies published up to now, related to the correlation between spatial structure and visitors' behavior in a museum are rather relatively lacking when it comes to the in-depth consideration for the effect of the actual exhibition environment. So the main purpose of this study is to define the correlation between the light environment and the visitors' behavior. Towards this end, this study uses 'space syntax' to quantify the spatial structure with 'integration', 'connectivity' and 'control value'. Meanwhile, 'tracking score' and 'tracking frequency' were selected as the scope among the indices of behavior's analysis. The results of this study are as follows; First, integration and correlation of tracking score and tracking frequency are lowest when it comes to the extra large historical museums where the difference of intensity of illumination by each convex space. Meanwhile, the most considerable effect is exerted by control value. Compared to tracking score, tracking frequency is closely related to 'syntactic variables'. Second, visitors do not take the short cut the dark exhibition space even when very dark exhibition spaces continue after passing through relatively bright space. Analysis of visitors' behavior by control value in the exhibition space composed of this type of intensity of illumination environment is not valid. Third, visitors move to relatively brighter transitional space compared to the exhibition space with low intensity of illumination when passing through dark exhibition continually. Meanwhile, when visitors pass through the exhibition space there is some difference intensity of illumination they move to relatively dark exhibition center among the subsequent exhibition spaces. Accordingly, when the composition of exhibition space that continues onto the environment of low intensity of illumination is inevitable, differentiating intensity of illumination appropriately would be effective in inducing visit to the subsequent exhibition space.

Effects of Soil Moisture on the Growth of Acer Palmatum under Indoor Low Light Intensity (실내의 저광도하에서 토양수분이 단풍나무의 생육에 미치는 영향)

  • 윤지영;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • This study is conducted to analyze effects of soil moisture on the growth of maple(Acer palmatum) under indoor low light intensity. Maples grew under three different light intensities such as sunny place(average 353.2W/$m^2$), half shade(average 7.7 W/$m^2$) and shade/(average 1.9W/$m^2$).Under half shady and shady condition, each 24 planters(2 maples planted in each planter) were used and divided into 3 groups treated with different watering points. Three levels of soil water potential were set for watering points, such as -200mbar, -300mbar or -500mbar. Under sunny condition, there were only group of 8 planters, as comparison. Watering was applied when soil water potentials reached -500maber. The results of plant growth experiment are as followed. 1. Under the shady condition, 32 maples died among 48 maples for 7 months. 9 maples survived, watered at soil water potential -200mbar, 5maples at -300mbar and 2maples at -500mbar. 2. Leaf water content ratios were higher under lower light intensity. For the cell wall became thinner under lower light intensity. 3. Maples in shady were easy to die due to having thin cell wall, therefore they were easy to loss the turgor pressure. 4. In case of half shady condition, the group, watered at soil water potential -200mbar, had much smaller amount of rootlet than -300mbar, because there were excessive soil water. The group, watered at soil water potential -500mbar, had smaller amount of rootlet than -300mbar and there was a remarkable difference in leaf water potential in spite of nearly same soil water potential, because leaves received the water stress under lower soil water potential. 5. When maples grew soundly, the leaf water potential was largely influenced by the soil water potential.

  • PDF

Effect of Light Pretreatment on Photosynthetic Characteristics of Leaf Blade in Japonica and Tongil Type Rice (벼 자포니카와 통일형 품종간 광전역에 따른 엽신의 광합성특성 차이)

  • 허훈;류경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.307-316
    • /
    • 1994
  • To investigate the effect of light pretreatment on photosynthetic characteristics of leaf blade of rice, 2 varieties of japonica type and 2 varieties of tongil type were grown under 30% or 70% shading conditions from tillering stage to heading stage. Shading treatment of 70% at the heading stage produced low dry matter, and higher LAR and SLA compared with other combination of shading treatment and growing stage did. Photosynthetic activity was lower in order of 0%, 30% and 70% shading treatment under the low light intensity(5Klux) but significantly high in 30% shading treatment under the high light intensity (33Klux) at tillering stage. Photosynthetic activity under low(5Klux) and high(33Kluk) light intensity were higher in order of 70%, 30% and 0% shading treatment at heading stage. Respiration /photosynthesis ratio was lower in shading treatment than in control. CGR, RGR and NAR decreased in shading treatment. Shading treatment reduced the number of ripened grain per panicle and decreased the harvesting index.

  • PDF

Light Intensity Influences Photosynthesis and Crop Characteristics of Jeffersonia dubia

  • Rhie, Yong Ha;Lee, Seung Youn;Jung, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.584-589
    • /
    • 2014
  • Jeffersonia dubia is a spring-flowering perennial found in rich forests in Korea and Northern China and has potential as an ornamental or medicinal plant. However, illegal picking and land use change have decreased the number of populations and overall population size of this plant in its natural habitat. Although J. dubia has been reported to be a shade-preferring plant, no study has determined the optimum light intensity for its growth. The objectives of this work were to observe the effects of various shading levels on the physiological responses of J. dubia and to determine the proper shading level for cultivation. Treatments consisted of four shading levels (0%, 50%, 75%, and 95% shade) imposed using black mesh cloth. The number of leaves and dry weight increased with decreased shading. The shoot-to-root ratio increased with increased shading, mainly due to decreased root dry weight under shading. Plants showed low net $CO_2$ assimilation rates and $F_v/F_m$ values combined with low dry matter levels when grown under 0% shade (full sunlight). These results indicate that J. dubia plants experience excessive irradiance without shading, resulting in damage to the photosynthetic apparatus. By contrast, the net photosynthesis rate increased as the shading level increased. $F_v/F_m$, the potential efficiency of PSII, was 0.8 under 95% shade, indicating that J. dubia is well-adapted under heavy shading. However, the low dry matter of plants in the 95% shade treatment indicated that the low light intensity under 95% shade led to a decline in plant growth. Thus, moderate light (50% shading) is recommended for cultivating J. dubia without physiological defects.

Interactive Effects of Ozone and Light Intensity on Platanus occidentalis L. Seedlings

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Kab-Yeon;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.508-515
    • /
    • 2008
  • Sycamore (Platanus occidentalis L.) seedlings were grown under low light intensity and ozone treatments to investigate the role of the light environment in their response to chronic ozone stress. One-year-old seedlings of Platanus occidentalis L. were grown in pots for 3 weeks under low light (OL, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and high light (OH, $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) irradiance in combination with 150 ppb of ozone fumigation. After three weeks of ozone and light treatment, seedlings were placed in ozone free clean chamber for 3 weeks for recovery from ozone stress with same light conditions to compare recovery capacity. Ozone fumigation determined an impairment of the photosynthetic process. Reduction of leaf dry weight (14%) and shoo/root ratio (17%) were observed in OH treatment. OL treatment also showed severe reductions in leaf dry weight and shoot/root ratio by 48% and 36% comparing to control, respectively. At the recovery phase, OH-treated plants recovered their biomass, whereas OL-treated plant showed reduction in leaf dry weight (52%) and shoot/root ratio (49%). OH-treated plants reached similar relative growth rate (RGR) comparing to control, whereas OL-treated plants showed lower RGR in stem height. However, there were no significant differences in response to those treatments in stem diameter RGR at the recovery phase. Ozone treatment produced significant reduction of net photosynthesis in both high and low light treatments. Carboxylation efficiency and apparent quantum yield in OL-treated plants showed significant reductions rate to 10% and 45%, respectively. At the recovery stage, ozone exposed seedlings under high light had similar photosynthetic capacity comparing to control plants. Antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased in ozone fumigated plants only under low light. The present work shows that the physiological changes occur in photosynthesis-related parameters and growth due to ozone and low light stress. Thus, low light seems to enhance the detrimental effects of ozone on growth, photosynthesis, and antioxidant enzyme responses.

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity

  • Ebadi, Nassibeh;Yadipour, Reza;Baghban, Hamed
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.85-89
    • /
    • 2018
  • This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.

Photosynthesis, Chlorophyll Contents and Leaf Characteristics of Illicium anisatum under Different Shading Treatments (비음처리에 따른 붓순나무의 광합성, 엽록소 함량 및 엽 특성)

  • Son, Seog-Gu;Han, Jin-Gyu;Kim, Chan-Soo;Hwang, Suk-In;Jeong, Jin-Heon;Lee, Sung-Gie
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1313-1318
    • /
    • 2007
  • Illicium anisatum was bred under four different light intensity. Those condition were full sunlight(PPFD $1600{\mu} mol\;m^{-2}s^{-1}$), 30% treatment(PPFD $400{\mu} mol\;m^{-2}s^{-1}$), 50% treatment(PPFD $250{\mu} mol\;m^{-2}s^{-1}$) and 70% treatment(PPFD $100{\mu} mol\;m^{-2}s^{-1}$), respectively. Chlorophyll a and b were increased according to decrease of light intensity. Thirty percent and 50% treatment had not significant different in chlorophyll a and b. Thirty percent treatment was shown the best photosynthetic activity through invested photosynthetic rate, intercellular $CO_2$ concentration and water use efficiency. Photosynthetic activity trend of 50% treatment was similar to 30% treatment. Seventy percent treatment was shown the best photosynthetic activity at low light intensity but that was decreased to lower value than 30% and 50% treatment under high intensity. Control, bred full sunlight, was shown the worst photosynthetic activity at measured all light intensity. That result could imply that was caused by photo-inhibition because of long term exposed of shade tolerant plant at high light intensity. Leaf characteristics had not significant different in leaf length, width and area but leaf dry weight had similar trend to photosynthetic activity.

A Low-Power and Small-Area Pulse Width Modulator y Light Intensity for Photoflash (광량 변화에 따른 저전력 작은 면적을 가지는 포토플래시 용 펄스폭 변조기)

  • Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.17-22
    • /
    • 2008
  • This paper presents a low-power and small-area pulse width modulator by light intensity for photoflash. Light intensity controller is achieved by using capacitor, photodiode, and comparator. The proposed circuit designs digital circuit to reduce static power consumption except comparator. And IGBT driver has short circuit protection using delay cell. The pulse width modulator has the operating range of $V_{MS}$ from 0.5V to 2.5V and pulse width of output from 0.14ms to 1.65ms at 300Hz. The pulse width modulator fabricated in $0.35-{\mu}m$ CMOS technology occupies $0.85mm{\times}0.56mm$. This circuit consumes 3.0mW at 300Hz and 3.0V.