FIG. 1. (a) Three-dimensional view of the PC cavity (core area of PC nanocavity in dark gray, cladding in light gray), (b) band structure of the PC structure.
FIG. 2. (a) The spectrum of the PC nanocavity, (b) corresponding x-component of the electric-field intensity at the resonant wavelength, (c) corresponding y-component of the electric-field intensity at the resonant wavelength.
FIG. 3. (a) Three-dimensional schematic of the bowtie nanoantenna, (b) spectral response of the bowtie nanoantenna.
FIG. 4. (a) Two-dimensional view of the analyzed hybrid structure, (b) wavelength spectrum of the hybrid structure, (c) calculated enhancement of the electric field intensity distribution |E|2 at the resonant wavelength, (d) calculated enhancement of the x-component of the electric-field intensity distribution |Ex|2 at the resonant wavelength, (e) calculated y-component of the electric-field intensity distribution |Ey|2 at the resonant wavelength.
References
- T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, "Plasmonic-photonic crystal coupled Nanolaser," Nanotechnol. 25, 315201 (2014). https://doi.org/10.1088/0957-4484/25/31/315201
- A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, "3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nanoantenna," Opt. Express 18, A381-A394 (2010). https://doi.org/10.1364/OE.18.00A381
- A. El Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, "Huge light-enhancement by coupling a bowtie nanoantenna's plasmonic resonance to a photonic crystal mode," Opt. Express 22, 14464-14472 (2014). https://doi.org/10.1364/OE.22.014464
- H. Pan, S. Assefa, W. M. J. Green, D. M. Kuchta, C. L. Schow, A. V. Rylyakov, B. G. Lee, C. W. Baks, S. M. Shank, and Y. A. Vlasov, "High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier," Opt. Express 20, 18145-18155 (2012). https://doi.org/10.1364/OE.20.018145
- H. Miao, K. Srinivasan, and V. Aksyuk, "A microelectromechanically controlled cavity optomechanical sensing system," New J. Phys. 14, 075015 (2012). https://doi.org/10.1088/1367-2630/14/7/075015
- H. A, Atwater, and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater. 9, 205-213 (2010). https://doi.org/10.1038/nmat2629
- G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. Haller, and J. Vuckovic, "Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode," Nat. Commun. 2, 539 (2011). https://doi.org/10.1038/ncomms1543
- M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean "Light funneling from a photonic crystal laser cavity to a nanoantenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale," Opt. Express 22, 15075-15087 (2014). https://doi.org/10.1364/OE.22.015075
- P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Sci. 308, 1607-1609 (2005). https://doi.org/10.1126/science.1111886
- J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). https://doi.org/10.1103/PhysRevB.71.235420
- R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997). https://doi.org/10.1063/1.118577
- P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). https://doi.org/10.1103/PhysRevLett.94.017402
- A. Alu and N. Engheta, "Hertzian plasmonic nanodimer as an efficient optical nanoantenna," Phys. Rev. B 78, 195111 (2008). https://doi.org/10.1103/PhysRevB.78.195111
- O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Optical scattering resonances of single and coupled dimmer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007). https://doi.org/10.1364/OE.15.017736
- L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006). https://doi.org/10.1021/nl052371p
- W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nat. 424, 824-830 (2003). https://doi.org/10.1038/nature01937
- H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). https://doi.org/10.1364/OE.16.009144
- P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
- Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, "Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million," Appl. Phys. Lett. 104, 241101 (2014). https://doi.org/10.1063/1.4882860
- R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, "Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters," Nat. Commun. 5, 5580 (2014). https://doi.org/10.1038/ncomms6580
- U. P. Dharanipathy, M. Minkov, M. Tonin, V. Savona, and R. Houdre, "High-Q silicon photonic crystal cavity for enhanced optical nonlinearities," Appl. Phys. Lett. 105, 101101 (2014). https://doi.org/10.1063/1.4894441
- P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). https://doi.org/10.1364/OPEX.13.000801
- D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). https://doi.org/10.1103/PhysRevLett.95.013904
- T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nat. 432, 200-203 (2004). https://doi.org/10.1038/nature03119
- J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). https://doi.org/10.1103/PhysRevE.65.016608
- S. Aneja and M. Kumar, "Design of a three-hole defect photonic crystal nanocavity with high-quality and enhanced Purcell factor," Opt. Eng. 54, 017106 (2015). https://doi.org/10.1117/1.OE.54.1.017106