DOI QR코드

DOI QR Code

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity

  • Ebadi, Nassibeh (Department of Electrical and Computer Engineering, University of Tabriz) ;
  • Yadipour, Reza (Department of Electrical and Computer Engineering, University of Tabriz) ;
  • Baghban, Hamed (School of Engineering-Emerging Technologies, University of Tabriz)
  • Received : 2016.12.05
  • Accepted : 2018.01.04
  • Published : 2018.02.25

Abstract

This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.

Keywords

KGHHD@_2018_v2n1_85_f0001.png 이미지

FIG. 1. (a) Three-dimensional view of the PC cavity (core area of PC nanocavity in dark gray, cladding in light gray), (b) band structure of the PC structure.

KGHHD@_2018_v2n1_85_f0002.png 이미지

FIG. 2. (a) The spectrum of the PC nanocavity, (b) corresponding x-component of the electric-field intensity at the resonant wavelength, (c) corresponding y-component of the electric-field intensity at the resonant wavelength.

KGHHD@_2018_v2n1_85_f0003.png 이미지

FIG. 3. (a) Three-dimensional schematic of the bowtie nanoantenna, (b) spectral response of the bowtie nanoantenna.

KGHHD@_2018_v2n1_85_f0004.png 이미지

FIG. 4. (a) Two-dimensional view of the analyzed hybrid structure, (b) wavelength spectrum of the hybrid structure, (c) calculated enhancement of the electric field intensity distribution |E|2 at the resonant wavelength, (d) calculated enhancement of the x-component of the electric-field intensity distribution |Ex|2 at the resonant wavelength, (e) calculated y-component of the electric-field intensity distribution |Ey|2 at the resonant wavelength.

References

  1. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, "Plasmonic-photonic crystal coupled Nanolaser," Nanotechnol. 25, 315201 (2014). https://doi.org/10.1088/0957-4484/25/31/315201
  2. A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, "3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nanoantenna," Opt. Express 18, A381-A394 (2010). https://doi.org/10.1364/OE.18.00A381
  3. A. El Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, "Huge light-enhancement by coupling a bowtie nanoantenna's plasmonic resonance to a photonic crystal mode," Opt. Express 22, 14464-14472 (2014). https://doi.org/10.1364/OE.22.014464
  4. H. Pan, S. Assefa, W. M. J. Green, D. M. Kuchta, C. L. Schow, A. V. Rylyakov, B. G. Lee, C. W. Baks, S. M. Shank, and Y. A. Vlasov, "High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier," Opt. Express 20, 18145-18155 (2012). https://doi.org/10.1364/OE.20.018145
  5. H. Miao, K. Srinivasan, and V. Aksyuk, "A microelectromechanically controlled cavity optomechanical sensing system," New J. Phys. 14, 075015 (2012). https://doi.org/10.1088/1367-2630/14/7/075015
  6. H. A, Atwater, and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater. 9, 205-213 (2010). https://doi.org/10.1038/nmat2629
  7. G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. Haller, and J. Vuckovic, "Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode," Nat. Commun. 2, 539 (2011). https://doi.org/10.1038/ncomms1543
  8. M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean "Light funneling from a photonic crystal laser cavity to a nanoantenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale," Opt. Express 22, 15075-15087 (2014). https://doi.org/10.1364/OE.22.015075
  9. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Sci. 308, 1607-1609 (2005). https://doi.org/10.1126/science.1111886
  10. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). https://doi.org/10.1103/PhysRevB.71.235420
  11. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997). https://doi.org/10.1063/1.118577
  12. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). https://doi.org/10.1103/PhysRevLett.94.017402
  13. A. Alu and N. Engheta, "Hertzian plasmonic nanodimer as an efficient optical nanoantenna," Phys. Rev. B 78, 195111 (2008). https://doi.org/10.1103/PhysRevB.78.195111
  14. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Optical scattering resonances of single and coupled dimmer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007). https://doi.org/10.1364/OE.15.017736
  15. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006). https://doi.org/10.1021/nl052371p
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nat. 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  17. H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). https://doi.org/10.1364/OE.16.009144
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  19. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, "Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million," Appl. Phys. Lett. 104, 241101 (2014). https://doi.org/10.1063/1.4882860
  20. R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, "Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters," Nat. Commun. 5, 5580 (2014). https://doi.org/10.1038/ncomms6580
  21. U. P. Dharanipathy, M. Minkov, M. Tonin, V. Savona, and R. Houdre, "High-Q silicon photonic crystal cavity for enhanced optical nonlinearities," Appl. Phys. Lett. 105, 101101 (2014). https://doi.org/10.1063/1.4894441
  22. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). https://doi.org/10.1364/OPEX.13.000801
  23. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). https://doi.org/10.1103/PhysRevLett.95.013904
  24. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nat. 432, 200-203 (2004). https://doi.org/10.1038/nature03119
  25. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). https://doi.org/10.1103/PhysRevE.65.016608
  26. S. Aneja and M. Kumar, "Design of a three-hole defect photonic crystal nanocavity with high-quality and enhanced Purcell factor," Opt. Eng. 54, 017106 (2015). https://doi.org/10.1117/1.OE.54.1.017106