• Title/Summary/Keyword: logic gate delay

Search Result 59, Processing Time 0.026 seconds

Functionally Integrated Nonsaturating Logic Elements (기능상 집적된 비포화 논리소자)

  • Kim, Wonchan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.42-45
    • /
    • 1986
  • This paper introduces novel functionally integrated logic elements which are conceptuallized for large scale integrated circuits. Efforts are made to minimize the gate size as well as to reduce the operational voltage, without sacrificing the speed performance of the gates. The process used was a rather conventional collector diffusion isolation(CDI) process. New gate structures are formed by merging several transistors of a gate in the silicon substrate. Thested elements are CML(Current Mode Logic) and EECL (Emitter-to-Emitter Coupled Logic)gates. The obtained experimental results are power-delay product of 6~11pJ and delay time/gate of 1.6~1.8 ns, confirming the possibility of these novel gate structures as a VLSI-candidate.

  • PDF

Design of a high speed and high intergrated ISL(Intergrated Schottky Logic) using a merged transistor (병합트랜지스터를 이용한 고속, 고집적 ISL의 설계)

  • 장창덕;이용재
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.415-419
    • /
    • 1999
  • Many bipolar logic circuit of conventional occurred problem of speed delay according to deep saturation state of vertical NPN Transistor. In order to remove minority carries of the base region at changing signal in conventional bipolar logic circuit, we made transistor which is composed of NPN transistor shortened buried layer under the Base region, PNP transistor which is merged in base, epi layer and substrate. Also the Ring-Oscillator for measuring transmission time-delay per gate was designed as well. The structure of Gate consists of the vertical NPN Transistor, substrate and Merged PNP Transistor. In the result, we fount that tarriers which are coming into intrinsic Base from Emitter and the portion of edge are relatively a lot, so those make Base currents a lot and Gain is low with a few of collector currents because of cutting the buried layer of collector of conventional junction area. Merged PNP Transistor's currents are low because Base width is wide and the difference of Emitter's density and Base's density is small. we get amplitude of logic voltage of 200mv, the minimum of transmission delay-time of 211nS, and the minimum of transmission delay-time per gate of 7.26nS in AC characteristic output of Ring-Oscillator connected Gate.

  • PDF

Comparative Study on the Structural Dependence of Logic Gate Delays in Double-Gate and Triple-Gate FinFETs

  • Kim, Kwan-Young;Jang, Jae-Man;Yun, Dae-Youn;Kim, Dong-Myong;Kim, Dae-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.134-142
    • /
    • 2010
  • A comparative study on the trade-off between the drive current and the total gate capacitance in double-gate (DG) and triple-gate (TG) FinFETs is performed by using 3-D device simulation. As the first result, we found that the optimum ratio of the hardmask oxide thickness ($T_{mask}$) to the sidewall oxide thickness ($T_{ox}$) is $T_{mask}/T_{ox}$=10/2 nm for the minimum logic delay ($\tau$) while $T_{mask}/T_{ox}$=5/1~2 nm for the maximum intrinsic gate capacitance coupling ratio (ICR) with the fixed channel length ($L_G$) and the fin width ($W_{fin}$) under the short channel effect criterion. It means that the TG FinFET is not under the optimal condition in terms of the circuit performance. Second, under optimized $T_{mask}/T_{ox}$, the propagation delay ($\tau$) decreases with the increasing fin height $H_{fin}$. It means that the FinFET-based logic circuit operation goes into the drive current-dominant regime rather than the input gate load capacitance-dominant regime as $H_{fin}$ increases. In the end, the sensitivity of $\Delta\tau/{\Delta}H_{fin}$ or ${{\Delta}I_{ON}}'/{\Delta}H_{fin}$ decreases as $L_G/W_{fin}$ is scaled-down. However, $W_{fin}$ should be carefully designed especially in circuits that are strongly influenced by the self-capacitance or a physical layout because the scaling of $W_{fin}$ is followed by the increase of the self-capacitance portion in the total load capacitance.

Design of ISL(Intergrated Schottky Logic) for improvement speed using merged transistor (속도 향상을 위한 병합트랜지스터를 이용한 ISL의 설계)

  • 장창덕;백도현;이정석;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.21-25
    • /
    • 1999
  • In order to remove minority carries of the base region at changing signal in conventional bipolar logic circuit, we made transistor which is composed of NPN transistor shortened buried layer under the Base region, PNP transistor which is merged in base, epi layer and substrate. Also the Ring-Oscillator for measuring transmission time-delay per gate was designed as well. In the result, we get amplitude of logic voltage of 200mV, the minimum of transmission delay-time of 211nS, and the minimum of transmission delay-time per gate of 7.26ns in AC characteristic output of Ring-Oscillator connected Gate.

  • PDF

Delay Time Modeling for ED MOS Logic LSI and Multiple Delay Logic Simulator (ED MOS 논리 LSI 의 지연시간 모델링과 디자인 논리 시뮬레이터)

  • 김경호;전영준;이창우;박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.701-707
    • /
    • 1987
  • This paper is concerned with an accurate delay time modling of the ED MOS logic gates and its application to the multiple delay logic simulator. The proposed delay model of the ED MOS logic gate takes account of the effects of not only the loading conditions but also the slope of the input waveform. Defining delay as the time spent by the current imbalance of the active inverter to charge and discharge the output load, with respect to physical reference levels, rise and fall model delay times are obtained in an explicit formulation, using optimally weighted imbalance currents at the end points of the voltage transition. A logic simulator which uses multiple rise/fall delays based on the model as decribed in the above has been developed. The new delay model and timing verification method are evaluated with repect to delay accuracy and execution time.

  • PDF

Design of A Logic/Timing Extraction System for Higher-level Design Verification (상위단계 설계 검증을 위한 논리/타이밍 추출 시스템의 설계)

  • 이용재;문인호;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.2
    • /
    • pp.76-85
    • /
    • 1993
  • This paper describes the design of a technology-independent logic, function, and timing extraction system from SPICE-like network descriptions. Technology-independent extraction mechanism is provided in the form of technology files containing the rules for constructing logic gates and functional blocks. The designed system can be more effectively used in cell-based design by describing the cells to be extracted. Timing extraction is performed by using a linear RC gate delay model which takes interconnection delay into account. Experimental results show that estimated delay is within 10 percents for logic gate circuits when compared with SPICE. Through higher-level design descriptions obtained by extraction, design cycles can be considerably reduces.

  • PDF

Delay Insensitive Asynchronous Circuit Design Based on New High-Speed NCL Cells (새로운 고속의 NCL 셀 기반의 지연무관 비동기 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • The delay-insensitive Null Convention Logic (NCL) asynchronous design as one of innovative asynchronous logic design methodologies has many advantages of inherent robustness, power consumption, and easy design reuses. However, transistor-level structures of conventional NCL gate cells have weakness of low speed, high area overhead or high wire complexity. Therefore, this paper proposes a new high-speed NCL gate cells designed at transistor level for high-speed, low area overhead, and low wire complexity. The proposed NCL gate cells have been compared to the conventional NCL gates in terms of circuit delay, area and power consumption.

Path Delay Test-Set Preservation of De Morgan and Re-Substitution Transformations (드모르간 및 재대입 변환의 경로지연고장 테스트집합 유지)

  • Yi, Joon-Hwan;Lee, Hyun-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.51-59
    • /
    • 2010
  • Two logic transformations, De Morgan and re-substitution, are sufficient to convert a unate gate network (UGN) to a more general balanced inversion parity (BIP) network. Circuit classes of interest are discussed in detail. We prove that De Morgan and re-substitution transformations are test-set preserving for path delay faults. Using the results of this paper, we can easily show that a high-level test set for a function z that detects all path delay faults in any UGN realizing z also detects all path delay faults in any BIP realization of z.

Design of a Time Optimaized Technology Mapping System (타이밍 최적화 기술 매핑 시스템의 설계)

  • 이상우;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.106-115
    • /
    • 1994
  • This paper presents the design of a technology mapping system for optimizing delays of combinational and synchronous sequential logic circuits. The proposed system performs delay optimization for combinational logic circuits by remapping, buffering, and gate merging methods through the correct delay calculation in which the loading values are considered. To get time optimized synchronous sequential circuits, heuristic algorithms are proposed. The proposed algorithms reallocate registers by considering the critical path characteristics. Experimental results show that the proposed system produces a more optimized technology mapping for MCNC benchmarks compared with mis-II.

  • PDF

A Study on the Exclusive-OR-based Technology Mapping Method in FPGA

  • Ko, Seok-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.936-944
    • /
    • 2003
  • In this paper, we propose an AND/XOR-based technology mapping method for field programmable gate arrays (FPGAs). Due to the fixed size of the programmable blocks in an FPGA, decomposing a circuit into sub-circuits with appropriate number of inputs can achieve excellent implementation efficiency. Specifically, the proposed technology mapping method is based on Davio expansion theorem to decompose a given Boolean circuit. The AND/XOR nature of the proposed method allows it to operate on XOR intensive circuits, such as error detecting/correcting, data encryption/decryption, and arithmetic circuits, efficiently. We conduct experiments using MCNC benchmark circuits. When using the proposed approach, the number of CLBs (configurable logic blocks) is reduced by 67.6% (compared to speed-optimized results) and 57.7% (compared to area-optimized results), total equivalent gate counts are reduced by 65.5 %, maximum combinational path delay is reduced by 56.7 %, and maximum net delay is reduced by 80.5 % compared to conventional methods.