• Title/Summary/Keyword: localization error

Search Result 504, Processing Time 0.027 seconds

Location Determination Scheme based on Proximity Position Data of a Target (목표물에 근접한 위치데이터를 사용한 2차원 위치추정방법)

  • Kim, Deok-Ki;Kim, Seung-Youl;Lee, Sang-Jin;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.87-93
    • /
    • 2010
  • This paper describes an improved location determination scheme based on the triangulation method calculating a target position. The proposed scheme uses coordinates of intersection points of three circles each generated by measurement of an observer. The target position obtained from the proposed scheme has higher accuracy not only at the vicinity, but also at the periphery of the observation area. The maximum error and the average error with the proposed scheme are reduced by 40.89% and 40.30%, respectively, with respect to conventional methods.

The Research on the Software Development for the Hardware Error Correction of MBES (Mutlibeam Echo Sounder) (멀티빔 음향 측심기에서 하드웨어 오류 보정을 위한 소프트웨어 개발에 관한 연구)

  • Lee, Ji Eun;Oh, Young Suk
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Although the ocean observation and exploration equipment is necessary for the oceanographical observation and strengthening influence of the nation and the resource preemption, it depended on the oversees adoption rather than the domestic development. The MBESs were developed for seabed topography, sedimentary distribution information and underwater objects exploration, but there is no domestic production. So in this research we try the localization of the marine acoustic sounder. Especially about correcting the error occurred on the hardware, we confirmed it on software.

Setup Verification in Stereotactic Radiotherapy Using Digitally Reconstructed Radiograph (DRR) (디지털화재구성사진(Digitally Reconstructed Radiograph)을 이용한 정위방사선수술 및 치료의 치료위치 확인)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • Purpose :To develop a method for verifying a treatment setup in stereotactic radiotherapy by ma- tching portal images to DRRs. Materials and Methods : Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mask frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anteriorfposterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned iso-center and fiducial markers are printed out on transparent films. And then, they were overlaid over onhogonal penal images by matching anatomical structures. From three different kind of objects (isgcenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), the displacement error between anatomical structure and fiducial markers (irnrnobiliBation error), and the displacement error between fiducial markers and isocenters (localization error) were measured. Results : Localization error were 1.5$\pm$0.3 mm (AP), 0.9$\pm$0.3 mm (lateral), and immobilization errors were 1.9$\pm$0.5 mm (AP), 1.9$\pm$0.4 mm (lateral). In addition, overall setup errors were 1.0$\pm$0.9 mm (AP), 1.3$\pm$0.4 mm (lateral). From these orthogonal displacement errors, maximum 3D displacement errors($\sqrt{(\DeltaAP)^{2}+(\DeltaLat)^{2}$)) were found to be 1.7$\pm$0.4 mm for localization, 2.0$\pm$0.6 mm for immobilization, and 2.3$\pm$0.7 mm for overall treatment setup. Conclusion : By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy.

  • PDF

Database based Global Positioning System Correction (데이터베이스 기반 GPS 위치 보정 시스템)

  • Moon, Jun-Ho;Choi, Hyuk-Doo;Park, Nam-Hun;Kim, Chong-Hui;Park, Yong-Woon;Kim, Eun-Tai
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • A GPS sensor is widely used in many areas such as navigation, or air traffic control. Particularly, the car navigation system is equipped with GPS sensor for locational information. However, when a car goes through a tunnel, forest, or built-up area, GPS receiver cannot get the enough number of satellite signals. In these situations, a GPS receiver does not reliably work. A GPS error can be formulated by sum of bias error and sensor noise. The bias error is generated by the geometric arrangement of satellites and sensor noise error is generated by the corrupted signal noise of receiver. To enhance GPS sensor accuracy, these two kinds of errors have to be removed. In this research, we make the road database which includes Road Database File (RDF). RDF includes road information such as road connection, road condition, coordinates of roads, lanes, and stop lines. Among the information, we use the stop line coordinates as a feature point to correct the GPS bias error. If the relative distance and angle of a stop line from a car are detected and the detected stop line can be associated with one of the stop lines in the database, we can measure the bias error and correct the car's location. To remove the other GPS error, sensor noise, the Kalman filter algorithm is used. Additionally, using the RDF, we can get the information of the road where the car belongs. It can be used to help the GPS correction algorithm or to give useful information to users.

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Searching Methods of Corresponding Points Robust to Rotational Error for LRF-based Scan-matching (LRF 기반의 스캔매칭을 위한 회전오차에 강인한 대응점 탐색 기법)

  • Jang, Eunseok;Cho, Hyunhak;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.505-510
    • /
    • 2016
  • This paper presents a searching method of corresponding points robust to rotational error for scan-matching used for SLAM(Simultaneous Localization and Mapping) in mobile robot. A differential driving mechanism is one of the most popular type for mobile robot. For driving curved path, this type controls the velocities of each two wheels independently. This case increases a wheel slip of the mobile robot more than the case of straight path driving. And this is the reason of a drifting problem. To handle this problem and improves the performance of scan-matching, this paper proposes a searching method of corresponding points using extraction of a closest point based on rotational radius of the mobile robot. To verify the proposed method, the experiment was conducted using LRF(Laser Range Finder). Then the proposed method is compared with an existing method, which is an existing method based on euclidian closest point. The result of our study reflects that the proposed method can improve the performance of searching corresponding points.

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.

Influence of Modeling Errors in the Boundary Element Analysis of EEG Forward Problems upon the Solution Accuracy

  • Kim, Do-Won;Jung, Young-Jin;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Accurate electroencephalography (EEG) forward calculation is of importance for the accurate estimation of neuronal electrical sources. Conventional studies concerning the EEG forward problems have investigated various factors influencing the forward solution accuracy, e.g. tissue conductivity values in head compartments, anisotropic conductivity distribution of a head model, tessellation patterns of boundary element models, the number of elements used for boundary/finite element method (BEM/FEM), and so on. In the present paper, we investigated the influence of modeling errors in the boundary element volume conductor models upon the accuracy of the EEG forward solutions. From our simulation results, we could confirm that accurate construction of boundary element models is one of the key factors in obtaining accurate EEG forward solutions from BEM. Among three boundaries (scalp, outer skull, and inner skull boundary), the solution errors originated from the modeling error in the scalp boundary were most significant. We found that the nonuniform error distribution on the scalp surface is closely related to the electrode configuration and the error distributions on the outer and inner skull boundaries have statistically meaningful similarity to the curvature distributions of the boundary surfaces. Our simulation results also demonstrated that the accumulation of small modeling errors could lead to considerable errors in the EEG source localization. It is expected that our finding can be a useful reference in generating boundary element head models.

A Mitigation of Multipath Ranging Error Using Non-linear Chirp Signal

  • Kim, Jin-Ik;Heo, Moon-Beom;Jee, Gyu-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.658-665
    • /
    • 2013
  • While the chirp signal is extensively used in radar and sonar systems for target decision in wireless communication systems, it has not been widely used for positioning in indoor environments. Recently, the IEEE 802.15.4a standard has adopted the chirp spread spectrum (CSS) as an underlying technique for low-power and low-complexity precise localization. Chirp signal based ranging solutions have been established and deployed but their ranging performance has not been analyzed in multipath environments. This paper presents a ranging performance analysis of a chirp signal and suggests a method to suppress multipath error by using a type of non-linear chirp signal. Multipath ranging performance is evaluated using a conventional linear chirp signal and the proposed non-linear chirp signal. We verify the feasibility of both methods using two-ray multipath model simulation. Our results demonstrate that the proposed non-linear chirp signal can successfully suppress the multipath error.

AN IV CATHETER FRAGMENTS DURING MDCT SCANNING OF HUMAN ERROR: EXPERIMENTAL AND REPRODUCIBLE MICROSCOPIC MAGNIFICATION ANALYSIS

  • Kweon, Dae-Cheol;Lee, Jong-Woong;Choi, Ji-Won;Yang, Sung-Hwan;Dong, Kyung-Rae;Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.195-199
    • /
    • 2011
  • The use of intravenous catheters are occasionally complicated by intravascular fragments and swelling of the catheter fragments. We present a patient in whom an intravenous catheter fragments was retrieved from the dorsal metacarpal vein following its incidental CT examination detection. The case of demonstrates the utility of microscopy and multi-detector CT in localizing small of subtle intravenous catheter fragments as a human error. A case of IV catheter fragments in the metacarpal vein, in which reproducible and microscopy data allowed complete localization of a missing fragments and guided surgery with respect to the optimal incision site for fragments removal. These reproducible studies may help to determine the best course of action and treatment for the patient who presents with such a case.