• 제목/요약/키워드: local model network

검색결과 576건 처리시간 0.026초

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제6권1호
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

Packet Interference and Aggregated Throughput of Bluetooth Piconets Using an Adaptive Frequency Hopping in Rician Fading Channels (라이시안 페이딩 채널에서 AFH알고리즘을 사용하는 블루투스 피코넷의 패킷 간섭과 통합 처리량 분석)

  • Kim, Seung-Yeon;Yang, Sung-Hyun;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제33권7B호
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper we analyze the packet interference probability and the aggregated throughput of a WPAN in which a number of Bluetooth piconets share the ISM band with WLANS. Using an Adaptive Frequency Hopping algorithm, when the AFH is employed, the number of hops available to the Bluetooth piconets varies depending on the number of independent WLANs within the piconet's radio range. Using a packet collision model in a piconet cluster, we give an analysis of the packet interference probability and the aggregated throughput as a function of the available hops for the AFH algorithm. We also present an analytical model of packet interference with multi-path fading channel in a cluster of piconets. Through analysis, we obtain the packet collision probability and aggregated throughput assuming capture effect. Numerical examples are given to demonstrate the effect of various Parameters such as capture ratio, Rice factor and cluster size on the system performance.

Strategic Plan for Improvement of Citizen Service using Ubiquitous Technology on Public Area: Geospatial Web based Service (유비쿼터스 기술을 이용한 다중집합장소의 시민서비스 고도화 방안 : 지리공간 웹 기반 서비스 제공을 중심으로)

  • Kang, Young-Ok;Kim, Hee-Won
    • Spatial Information Research
    • /
    • 제16권1호
    • /
    • pp.79-99
    • /
    • 2008
  • Enterprises as well as central and local governments have tried to apply ubiquitous technology to the actual life on the various types of business and projects. In this paper we develop strategic plan to provide public service on public areas based on needs analysis of public services as well as trend analysis of ubiquitous and web technology. Ubiquitous service model should be based on geospatial web which can incorporate participation and collaboration concepts, as the wire/wireless network system develop rapidly. To achieve this purpose, we suggest the following projects; 1), construction of internet map based on geospatial web technology, 2), development of web contents based on geospatial web, 3), installing ubiquitous equipment, and 4), upgrade Seoul Metropolitan Government's homepage and internet system which can incorporate web 2.0 concepts. Ubiquitous service model should be based on not only development of ubiquitous technology but also needs of consumer such as citizen, enterprises, and public sectors which have an interest in that place. Geospatial web will be the core of development of ubiquitous service models.

  • PDF

Crustal Structure of the Southern Part of Korea (한국(韓國) 남부지역(南部地域)의 지각구조(地殼構造))

  • Kim, Sung Kyun;Jung, Bu Hung
    • Economic and Environmental Geology
    • /
    • 제18권2호
    • /
    • pp.151-157
    • /
    • 1985
  • Events detected by the KIER microearthquake network operated in the Southern Part of Korea for 265 days in 1982~1984 were reviewed, and some of them were identified to be a dynamite explosion from several construction sites. The purpose of the present work is to determine the crustal structure of the Southern Korea using the time-destance data obtained from such explosion seismic records. The time·distance data can be well explained by a crustal model composed of four horizontal layers of which thickness, p and s-wave velocity ($V_p$ and $V_s$) are characterized as follows. 1st layer (surface) ; 0~2km, $V_p=5.5km/sec$, $V_s=3.3km/sec$ 2nd layer (upper crust) ; 2~15km, $V_p=6.0km/sec$, $V_s=3.5km/sec$ 3rd layer (lower crust) ; 15~29km, $V_p=6.6km/sec$, $V_s=3.7km/sec$ 4th layer (upper mantle) ; 29km~ , $V_p=7.7km/sec$, $V_s=4.3km/sec$ The relatively shallow crust·mantle boundary and low $P_n$ velocity compared with the mean values for stable intraplate region are noteworthy. Supposedely, it is responsible for the high heat flow in the South-eastern Korea or an anomalous subterranean mantle. The mean $V_p/V_s$ ratio calculated from the relation between p-wave arrival and s-p arrival times appears to be 1.735 which is nearly equivalent to the elastic medium of ${\lambda}={\mu}$. However, the ratio tends to be slightly larger with the depth. The ratio is rather high compared with that of the adjacent Japanese Island, and the fact suggests that the underlying crust and upper mantle in this region are more ductile and hence the earthquake occurrences are apt to be interrupted. As an alternative curstal model, a seismic velocity structure in which velocities are successively increased with the depth is also proposed by the inversion of the time·distance data. With the velocity profile, it is possible to calculate a travel time table which is appropriate to determine the earthquake parameters for the local events.

  • PDF

Transfer and Validation of NIRS Calibration Models for Evaluating Forage Quality in Italian Ryegrass Silages (이탈리안 라이그라스 사일리지의 품질평가를 위한 근적외선분광 (NIRS) 검량식의 이설 및 검증)

  • Cho, Kyu Chae;Park, Hyung Soo;Lee, Sang Hoon;Choi, Jin Hyeok;Seo, Sung;Choi, Gi Jun
    • Journal of Animal Environmental Science
    • /
    • 제18권sup호
    • /
    • pp.81-90
    • /
    • 2012
  • This study was evaluated high end research grade Near infrared spectrophotometer (NIRS) to low end popular field grade multiple Near infrared spectrophotometer (NIRS) for rapid analysis at forage quality at sight with 241 samples of Italian ryegrass silage during 3 years collected whole country for evaluate accuracy and precision between instruments. Firstly collected and build database high end research grade NIRS using with Unity Scientific Model 2500X (650 nm~2,500 nm) then trim and fit to low end popular field grade NIRS with Unity Scientific Model 1400 (1,400 nm~2,400 nm) then build and create calibration, transfer calibration with special transfer algorithm. The result between instruments was 0.000%~0.343% differences, rapidly analysis for chemical constituents, NDF, ADF, and crude protein, crude ash and fermentation parameter such as moisture, pH and lactic acid, finally forage quality parameter, TDN, DMI, RFV within 5 minutes at sight and the result equivalent with laboratory data. Nevertheless during 3 years collected samples for build calibration was organic samples that make differentiate by local or yearly bases etc. This strongly suggest population evaluation technique needed and constantly update calibration and maintenance calibration to proper handling database accumulation and spread out by knowledgable control laboratory analysis and reflect calibration update such as powerful control center needed for long lasting usage of forage analysis with NIRS at sight. Especially the agriculture products such as forage will continuously changes that made easily find out the changes and update routinely, if not near future NIRS was worthless due to those changes. Many research related NIRS was shortly study not long term study that made not well using NIRS, so the system needed check simple and instantly using with local language supported signal methods Global Distance (GD) and Neighbour Distance (ND) algorithm. Finally the multiple popular field grades instruments should be the same results not only between research grade instruments but also between multiple popular field grade instruments that needed easily transfer calibration and maintenance between instruments via internet networking techniques.

COMPARISON OF LINEAR AND NON-LINEAR NIR CALIBRATION METHODS USING LARGE FORAGE DATABASES

  • Berzaghi, Paolo;Flinn, Peter C.;Dardenne, Pierre;Lagerholm, Martin;Shenk, John S.;Westerhaus, Mark O.;Cowe, Ian A.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1141-1141
    • /
    • 2001
  • The aim of the study was to evaluate the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural network (ANN) on the prediction of chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with information relative to moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected with 10 different Foss NIR Systems instruments, which were either standardized or not standardized to one master instrument. The spectra were trimmed to a wavelength range between 1100 and 2498 nm. Two data sets, one standardized (IVAL) and the other not standardized (SVAL) were used as independent validation sets, but 10% of both sets were omitted and kept for later expansion of the calibration database. The remaining samples were combined into one database (n=21,696), which was split into 75% calibration (CALBASE) and 25% validation (VALBASE). The chemical components in the 3 validation data sets were predicted with each model derived from CALBASE using the calibration database before and after it was expanded with 10% of the samples from IVAL and SVAL data sets. Calibration performance was evaluated using standard error of prediction corrected for bias (SEP(C)), bias, slope and R2. None of the models appeared to be consistently better across all validation sets. VALBASE was predicted well by all models, with smaller SEP(C) and bias values than for IVAL and SVAL. This was not surprising as VALBASE was selected from the calibration database and it had a sample population similar to CALBASE, whereas IVAL and SVAL were completely independent validation sets. In most cases, Local and ANN models, but not modified PLS, showed considerable improvement in the prediction of IVAL and SVAL after the calibration database had been expanded with the 10% samples of IVAL and SVAL reserved for calibration expansion. The effects of sample processing, instrument standardization and differences in reference procedure were partially confounded in the validation sets, so it was not possible to determine which factors were most important. Further work on the development of large databases must address the problems of standardization of instruments, harmonization and standardization of laboratory procedures and even more importantly, the definition of the database population.

  • PDF

A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression (다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구)

  • Hwang, Yoon-Jeong;Ahn, Joong-Bae
    • Journal of the Korean earth science society
    • /
    • 제28권2호
    • /
    • pp.214-226
    • /
    • 2007
  • Because precipitation is influenced by various atmospheric variables, it is highly nonlinear. Although precipitation predicted by a dynamic model can be corrected by using a nonlinear Artificial Neural Network, this approach has limits such as choices of the initial weight, local minima and the number of neurons, etc. In the present paper, we correct simulated precipitation by using a multiple linear regression (MLR) method, which is simple and widely used. First of all, Ensemble hindcast is conducted by the PNU/CME Coupled General Circulation Model (CGCM) (Park and Ahn, 2004) for the period from April to August in 1979-2005. MLR is applied to precipitation simulated by PNU/CME CGCM for the months of June (lead 2), July (lead 3), August (lead 4) and seasonal mean JJA (from June to August) of the Northeast Asian region including the Korean Peninsula $(110^{\circ}-145^{\circ}E,\;25-55^{\circ}N)$. We build the MLR model using a linear relationship between observed precipitation and the hindcasted results from the PNU/CME CGCM. The predictor variables selected from CGCM are precipitation, 500 hPa vertical velocity, 200 hPa divergence, surface air temperature and others. After performing a leave-oneout cross validation, the results are compared with the PNU/CME CGCM's. The results including Heidke skill scores demonstrate that the MLR corrected results have better forecasts than the direct CGCM result for rainfall.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • 제43권11호
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters (실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구)

  • Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
    • The Journal of Bigdata
    • /
    • 제5권2호
    • /
    • pp.17-27
    • /
    • 2020
  • District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • 제49권7호
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.