• 제목/요약/키워드: lithography process

검색결과 550건 처리시간 0.031초

표면 평탄도가 소프트리소법에 의한 미세 패턴 형성에 미치는 영향 (Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography)

  • 김경호;최균;한윤수
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.871-876
    • /
    • 2014
  • Efficiency of crystalline Si solar cell can be maximized as minimizing optical loss through antireflection texturing with inverted pyramids. Even if cost-competitive, soft lithography can be employed instead of photolithography for the purpose, some limitations still remain to apply the soft lithography directly to as-received solar grade wafer with a bunch of micro trenches on surface. Therefore, it is needed to develop a low-cost, effective planarization process and evaluate its output to be applicable to patterning process with PDMS stamp. In this study new surface planarization process is proposed and the change of micro scale trenches on the surface as a function of etching time is observed. Also, the effect of trenches on pattern quality by soft lithography is investigated using FEM structural analysis. In conclusion it is clear that the geometry and shape of trenches would be basic considerations for soft lithography application to low quality wafer.

Monomer based thermally curable resin을 이용한 150nm 급 Soft-Lithography (Sub 150nm Soft-Lithography using the monomer based thermally curable resin)

  • 양기연;홍성훈;이헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.676-679
    • /
    • 2005
  • Nano imprint Lithography (NIL) is regarded as one of the next-generation lithography technologies with EUV lithography, immersion lithography, Laser interference lithography. Because a Si wafer stamp and a quartz stamp, used to imprinting usually are very expensive and easily broken, it is suggested that master stamp is duplicated by PDMS and the PDMS stamp uses to imprint .For using the PDMS stamp, a thermally curable monomer resin was used for the imprinting process to lower pressure and temperature. As a result, NIL patterns were successfully fabricated.

  • PDF

Maskless 노광공정을 위한 LDI(Laser Direct Imaging) 시스템 개발 및 단일 레이저 빔 에너지 분포 분석 (Development of a LDI System for the Maskless Exposure Process and Energy Intensity Analysis of Single Laser Beam)

  • 이수진;김종수;신봉철;김동우;조명우
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.834-840
    • /
    • 2010
  • Photo lithography process is very important technology to fabricate highly integrated micro patterns with high precision for semiconductor and display industries. Up to now, mask type lithography process has been generally used for this purpose; however, it is not efficient for small quantity and/or frequently changing products. Therefore, in order to obtain higher productivity and lower manufacturing cost, the mask type lithography process should be replaced. In this study, a maskless lithography system using the DMD(Digital Micromirror Device) is developed, and the exposure condition and optical properties are analyzed and simulated for a single beam case. From the proposed experimental conditions, required exposure experiments were preformed, and the results were investigated. As a results, 10${\mu}m$ spots can be generated at optimal focal length.

ZnO 나노 입자 분산 레진의 thermal imprinting 공정을 통한 기능성 패턴 제작 (Fabrication of Functional ZnO Nano-particles Dispersion Resin Pattern Through Thermal Imprinting Process)

  • 권무현;이헌
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1419-1424
    • /
    • 2011
  • Nanoimprint lithography is a next generation lithography technology, which enables to fabricate nano to micron-scale patterns through simple and low cost process. Nanoimprint lithography has been applied in various industry fields such as light emitting diodes, solar cells and display. Functional patterns, including anti-reflection moth-eye pattern, photonic crystal pattern, fabricated by nanoimprint lithography are used to improve overall efficiency of devices in that fields. For these reasons, in this study, sub-micron-scaled functional patterns were directly fabricated on Si and glass substrates by thermal imprinting process using ZnO nano-particles dispersion resin. Through the thermal imprinting process, arrays of sub-micron-scaled pillar and hole patterns were successfully fabricated on the Si and glass substrates. And then, the topography, components and optical property of the imprinted ZnO nano-particles/resin patterns are characterized by Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy and UV-vis spectrometer, respectively.

전자빔과 무반사층이 없는 크롬 마스크를 이용한 나노그레이팅 사출성형용 고종횡비 100nm 급 니켈 스템퍼의 제작 (Fabrication of High Aspect Ratio 100nm-scale Nickel Stamper Using E-beam Lithography for the Injection molding of Nano Grating Patterns)

  • 서영호;최두선;이준형;제태진;황경현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.978-982
    • /
    • 2004
  • We present high aspect ratio 100nm-scale nickel stamper using e-beam lithography process and Cr/Qz mask for the injection molding process of nano grating patterns. Conventional photolithography blank mask (CrON/Cr/Qz) consists of quartz substrate, Cr layer of UV protection and CrON of anti-reflection layer. We have used Cr/Qz blank mask without anti-reflection layer of CrON which is non-conductive material and ebeam lithography process in order to simplify the nickel electroplating process. In nickel electroplating process, we have used Cr layer of UV protection as seed layer of nickel electroplating. Fabrication conditions of photolithography mask using e-beam lithography are optimized with respect to CrON/Cr/Qz blank mask. In this paper, we have optimized e-beam lithography process using Cr/Qz blank mask and fabricated nickel stamper using Cr seed layer. CrON/Cr/Qz blank mask and Cr/Qz blank mask require optimal e-beam dosage of $10.0{\mu}C/cm^2$ and $8.5{\mu}C/cm^2$, respectively. Finally, we have fabricated $116nm{\pm}6nm-width$ and $240nm{\pm}20nm-height$ nickel grating stamper for the injection molding pattern.

  • PDF

UV NIL을 이용한 Lift-off가 용이한 패턴 형성 연구 (Fabrications of nano-sized patterns using bi-layer UV Nano imprint Lithography)

  • 양기연;홍성훈;이헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1489-1492
    • /
    • 2005
  • Compared to other nano-patterning techniques, Nano imprint Lithography (NIL) has some advantages of high throughput and low process cost. To imprint low temperature and pressure, UV Nano imprint Lithography, which using the monomer based UV curable resin is suggested. Because fabrication of high fidelity pattern on topographical substrate is difficult, bi-layer Nano imprint lithography, which are consist of easily removable under-layer and imprinted pattern, is being used. If residual layer is not remained after imprinting, and under-layer is removed by oxygen RIE etching, we might be able to fabricate the bi-layer pattern for easy lift-off process.

  • PDF

비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공 (Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography)

  • 이정민;김선호;김택현;박정우
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구 (Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process)

  • 강지훈;김광섭;김경웅
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

Correction Simulation for Metal Patterns on Attenuated Phase-shifting Lithography

  • Lee, Hoong-Joo;Lee, Jun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권3호
    • /
    • pp.104-108
    • /
    • 2004
  • Problems of overlap errors and side-lobe printing by the design rule reduction in the lithography process using attenuated phase-shifting masks(attPSM) have been serious. Overlap errors and side-lobes can be simultaneously solved by the rule-based correction using scattering bars with the rules extracted from test patterns. Process parameters affecting the attPSM lithography simulation have been determined by the fitting method to the process data. Overlap errors have been solved applying the correction rules to the metal patterns overlapped with contact/via. Moreover, the optimal insertion rule of the scattering bars has made it possible to suppress the side-lobes and to get additional pattern fidelity at the same time.

Maskless Lithography system을 이용한 TSP 검사 용 micro bump 제작에 관한 연구. (A study of fabrication micro bump for TSP testing using maskless lithography system.)

  • 김기범;한봉석;양지경;한유진;강동성;이인철
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.674-680
    • /
    • 2017
  • 본 논문은 현재 개인 휴대기기 및 대형 디스플레이 장비의 제어에서 폭넓게 사용되고 있는 터치스크린 패널 (TSP; Touch Screen Panel)의 정상 작동 유무를 확인하기 위한 micro bump 제작 기술에 관한 연구이다. 터치스크린 패널은 감압식, 정전식 등의 여러 가지 방식이 있으나 지금은 편리성에 의하여 정전식 방식이 주도하고 있다. 정전식의 경우 해당하는 좌표의 접촉에 따라 전기적 신호가 변화하게 되고, 이를 통하여 접촉 위치를 확인할 수 있으며 따라서 접촉 위치에 따른 전기 특성 검사가 필수적이다. 검사공정에서 TSP의 모델이 변경됨에 따라 새로운 micro bump를 제작이 및 검사 프로그램의 수정이 필수적이다. 본 논문에서는 새로운 micro bump 제작 시 mask를 사용하지 않아 보다 경제적이며 변화에 대응이 유연한 maskless lithography 시스템을 이용하여 micro bump 제작 가능성에 대하여 확인하였다. 이를 위하여 제작되는 bump의 pitch에 따른 전기장 간섭 시뮬레이션을 진행하였으며, maskless lithogrphy 공정을 적용하기 위한 패턴 이미지를 생성하였다. 이후 MEMS 기술에 해당하는 PR(Photo Resist) 패터닝 공정에서 노광(Lithography) 공정 및 현상(Developing) 공정을 통하여 PR 마스크를 제작한 후 electro-plating 공정을 통하여 micro bump를 제작하였다.