DOI QR코드

DOI QR Code

Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography

표면 평탄도가 소프트리소법에 의한 미세 패턴 형성에 미치는 영향

  • Kim, Kyung Ho (Engineering Ceramic Team, KICET Ichron Branch) ;
  • Choi, Kyun (Engineering Ceramic Team, KICET Ichron Branch) ;
  • Han, Yoonsoo (Engineering Ceramic Team, KICET Ichron Branch)
  • 김경호 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 최균 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 한윤수 (한국세라믹기술원 이천분원 엔지니어링세라믹팀)
  • Received : 2014.10.21
  • Accepted : 2014.11.21
  • Published : 2014.12.01

Abstract

Efficiency of crystalline Si solar cell can be maximized as minimizing optical loss through antireflection texturing with inverted pyramids. Even if cost-competitive, soft lithography can be employed instead of photolithography for the purpose, some limitations still remain to apply the soft lithography directly to as-received solar grade wafer with a bunch of micro trenches on surface. Therefore, it is needed to develop a low-cost, effective planarization process and evaluate its output to be applicable to patterning process with PDMS stamp. In this study new surface planarization process is proposed and the change of micro scale trenches on the surface as a function of etching time is observed. Also, the effect of trenches on pattern quality by soft lithography is investigated using FEM structural analysis. In conclusion it is clear that the geometry and shape of trenches would be basic considerations for soft lithography application to low quality wafer.

Keywords

References

  1. S. Wenham and M. Green, ARC Photovoltaics Centre of Excellence, University of New South Wales, 2009 Annual Report, 76 (2009).
  2. R. K. Smith, P. A. Lewis, and P. S. Weiss, Progress in Surface Science 75, 1 (2004). https://doi.org/10.1016/j.progsurf.2003.12.001
  3. Y. S. Chi, J. K. Lee, K. B. Lee, D. J. Kim, and I. S. Choi, Bull. Korean Chem. Rev., 26, 361 (2005). https://doi.org/10.5012/bkcs.2005.26.3.361
  4. D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Biomaterials, 27, 3044 (2006). https://doi.org/10.1016/j.biomaterials.2005.12.024
  5. A. Offenhausser, S. B. Meffert, T. Decker, R. Helpenstein, P. Gasteier, J. Groll, M. Moller, A. Reska, S. Schafer, P. Schulte, and A. V. Eisele, Soft Matter, 3, 290 (2007). https://doi.org/10.1039/b607615g
  6. E. E. Johan, U. K. Sajid, and F. G. Ole, J. of the European Ceramic Society, 30, 1555 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.016
  7. C. Acikgoz, M.A. Hempenius, J. Huskens, and G. J. Vancso, European Polymer Journal, 47, 2033 (2011). https://doi.org/10.1016/j.eurpolymj.2011.07.025
  8. A. Mujahid, N. Iqbal, and A. Afzal, Biotechnology Advances, 31, 1435 (2013). https://doi.org/10.1016/j.biotechadv.2013.06.008
  9. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 1103 (2005). https://doi.org/10.1021/cr0300789
  10. Y. S. Chi, S. M. Kang, and I. S. Choi, Polymer Science and Technology, 17-2, 172 (2006).
  11. J. Hong and Y. S. Han, J. KIEEME, 26, 841 (2013).
  12. D. Qin, Y. Xia, and G. M. Whitesides, Nature Protocols, 5, 491 (2010). https://doi.org/10.1038/nprot.2009.234
  13. F. Huo, Z. Zheng, G. Zheng, L. Giam, H. Zhang, and C. A. Mirkin, Science, 321, 1658 (2008). https://doi.org/10.1126/science.1162193
  14. M. J. Madou, Fundamentals of Microfabrication, 2nd ed. (CRC Press LLC, 2002) Chapter. 4.
  15. I. Zubel, Sensors and Actuators A, 70, 260 (1998). https://doi.org/10.1016/S0924-4247(98)00142-3
  16. Y. Yu and Y. Zhao, J. Colloid and Interface Science, 332, 467 (2009). https://doi.org/10.1016/j.jcis.2008.12.054