• Title/Summary/Keyword: linear uncertain system

Search Result 287, Processing Time 0.025 seconds

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

A New Robust Discrete Static Output Feedback Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.630-635
    • /
    • 2010
  • In this paper, a new discrete static output feedback variable structure controller based on a new dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed dynamic-type sliding surface. The output feedback discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined dynamic-type sliding surface for guaranteeing the designed output in the dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

A New Robust Discrete Integral Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 적분형 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1167-1172
    • /
    • 2010
  • In this paper, a new discrete integral variable structure controller based on the a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral sliding surface. The discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral sliding surface for guaranteeing the designed output in the integral sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Robust Reliable H$\infty$ a Control of Continuous/Discrete Uncertain Time Delay Systems using LMI

  • Kim, Jong-Hae;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-127
    • /
    • 1999
  • In this paper, we present robust reliable H$\infty$ controller design methods of continuous and discrete uncertain time delay systems using LMI (linear matrix inequality) technique, respectively. Also the existence conditions of state feedback control are proposed . Using some changes of variables and Schur complements, the obtained sufficient conditions are transformed into an LMI form. The closed loop system by the obtained controller is quadratically stable with H$\infty$ norm bound for all admissible uncertainties, time delay, and all actuator failures occurred within the prespecified set. We show the validity of the proposed method through numerical example.

  • PDF

Delay-Dependent Stabilization for Uncertain Dynamic Systems with State and Input Delays (상태변수와 입력변수에 시간지연을 갖는 불확정 동적 시스템의 제어기 설계)

  • Cho Hyun-Ju;Park Ju-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.215-219
    • /
    • 2005
  • This paper aims at asymptotic stabilization for uncertain dynamic systems with state and input delays. We propose a memoryless state feedback controller which maximizes the delay bound for guaranteeing stability of the system. Using Lyapunov method and linear matrix inequality (LMI) approach, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criterion is represented in terms of LMIs, which can be solved by various efficient convex optimization algorithms. Numerical examples are given to illustrate our main method.

Identification of Interval Model for Parametric Uncertain Systems (파라미터 불확실성 시스템의 구간모델 식별)

  • 김동형;우영태;김영철
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.462-470
    • /
    • 2003
  • This paper presents an algorithm of identifying parametric uncertainty by way of an interval model. For a given set of frequency response data from an uncertain linear SISO system of which the upper and the lower bounds of both magnitude and phase responses are represented, the proposed algorithm consists of two main parts: first, the nominal model is identified by using Least Square Estimation (LSE), and then an interval model is constructed by expanding the extremal properties of interval systems, so that tightly enclose the given envelopes within those of interval model. Two numerical examples are given to demonstrate and verify the developed algorithm. The identified interval model can be used for evaluating the worst case performance and stability margins against parametric uncertainty by using some extremal properties on interval systems.

A New Improved Integral Variable Structure Controller for Uncertain Linear Systems (불확실 선형 시스템을 위한 새로운 개선된 적분 가변구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.177-183
    • /
    • 2001
  • In this paper, a new variable structure controller is designed for the tracker control of uncertain general plants so that the output of plants can controlled to a given arbitrary point in state space. By using the error between the steady state value of the output and the given reference, the sliding surface is defined, in advance, the surface from an initial state to the given reference without any reaching phase. A corresponding control input to satisfy the existence condition of the sliding mode is suggested to control the output on the predefined surface. Therefore the output controlled by the proposed controller is completely robust and identical to that of the sliding surface. Through an example, the usefulness is verified.

  • PDF

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

  • Lee Jongbae;Park Chang-Woo;Sung Ha-Gyeong;Lim Joonhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

A Switching Controller for Stabilization of Uncertain Linear Systems (불확실한 선형시스템의 안정화를 위한 스위칭제어기)

  • Kim, Jung-Soo;Kim, Byung-Yeun;Lyon, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.382-385
    • /
    • 1991
  • In order to stabilize linear time-invariant systems with the unknown system matrix, a piecewise constant linear state feedback control law including switching logic is developed. A number of feedback gain matrices are first precomputed by solving the Algebraic Riccati Equation with prescribed degree of stability, and then are switched over in a direction to increase degree of stability. Switching stops when a Lyapunov function shows the decreasing property, and hence switching times are finite.

  • PDF

DISTURBANCE ATTENUATION FOR A CLASS OF DISCRETE-TIME SWITCHED SYSTEMS WITH EXPONENTIAL UNCERTAINTY

  • Li, Changlin;Long, Fei;Ren, Guohui
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.775-795
    • /
    • 2011
  • The disturbance attenuation problem for a class of discretetime switched linear systems with exponential uncertainties via switched state feedback and switched dynamic output feedback is investigated, respectively. By using Taylor series approximation and convex polytope technique, exponentially uncertain discrete-time switched linear system is transformed into an equivalent switched polytopic model with additive norm bounded uncertainty. For such equivalent switched model, one designs its switching strategy and associated state feedback controllers and dynamic output feedback controllers so that whole switched model is asymptotical stabilization with H-in nity disturbance attenuation base on switched Lyapunov function and LMI approach. Finally, two numerical examples are presented to illustrate our results.