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Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling
and Numerical Optimization Programming

Jongbae Lee, Chang-Woo Park¥®, Ha-Gyeolng Sung, and Joonhong Lim

Abstract: This paper presents the robust stability analysis and design methodology of the fuzzy
feedback linearization control systems. Uncertainty and disturbances with known bounds are
assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear
plants. L, robust stability of the closed system is analyzed by casting the systems into the
diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear
matrix inequality (LMI) optimization programming, a numerical method for finding the
maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To
verify the effectiveness of the proposed scheme, the robust stability analysis and control design

examples are given.

Keywords: L; robust stability, feedback linearization, fuzzy control, linear matrix inequalities,

Takagi-Sugeno fuzzy model.

1. INTRODUCTION

A fuzzy model has excellent capability in a
nonlinear system description and is particularly
suitable for the complex or uncertain system [1]. By
using this property of the fuzzy models, the research
on the fuzzy feedback linearization scheme has been
conducted because the nonlinearity can be efficiently
modeled and canceled by fuzzy logic system [2-8].

Since the idea of the fuzzy feedback linearization
control based on Takagi-Sugeno (TS) models was
presented in [2], various kinds of robust [7-8] and
adaptive techniques [3-5] have been applied to the
fuzzy feedback linearization control. While the
adaptive fuzzy feedback linearization guarantees
Lyapunov- stability in the presence of uncertainty, it
has some practical limitations due to its complex
structures. From a practical point of view, robust
approach is more suitable for the fuzzy feedback
linearization to overcome the uncertainty [6-8]. The
stability analysis was made in the frequency domain
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in [6] and the robust stability condition and design
method using multivariable circle criterion have been
presented in [7]. However, they based on graphical
stability analysis, there exist some difficulties in being
applied to the control problems directly.

On the other hand, The linear matrix inequality
(LMI) theory is a new and fast growing field and a
valuable alternative to the analytical method {9,10]. A
variety of problems arising in system and control
theory can be reduced to a few standard convex or
quasiconvex optimization problems involving the
LMI. Specifically, for a class of fuzzy control
problems which is difficult to solve analytically, the
LMI techniques can afford the practical solutions. In
the recent papers [11-14], its applicability to the fuzzy
control was shown clearly.

In order to obtain the numerical solutions for the
fuzzy feedback linearization control systems, LMI
based robust stability condition which can be solved
numerically for the fuzzy feedback linearization
regulator has been presented in [8]. However, the only
stability analysis was done and the design problems
were not handled. In addition, the transformation of
the closed system into LMI form needed some
complex procedure such as a loop transformation.

In this paper, we study a controller design as well as
numerical stability analysis for the robust fuzzy
feedback linearization control systems using TS fuzzy
model. TS fuzzy model based control has been
extensively studied up to now [11,12] because it can
represent a nonlinear equation with a small number of
rules [1].

To analyze the robust stability of the fuzzy
feedback linearization control, we assume that the



226 Jongbae Lee, Chang-Woo Park, Ha-Gyeong Sung, and Joonhong Lim

uncertainty is included in the model structure with
known bounds. For these structured uncertainty, the
L, robust stability of the closed system is analyzed

by applying the LMI based convex optimization
method. The stability problems are cast into diagonal
norm bounded linear differential inclusions (DNLDI)
and a generalized eigenvalue problem (GEVP). In the
controller design part, based on the analysis methods,
we present a systematic numerical method for finding
the maximum stable ranges of the fuzzy feedback
linearization control gains.

This paper is organized as follows. Section 2
discusses the fuzzy feedback linearization control
scheme and in Section 3, the numerical stability
analysis and design method are presented. The
effectiveness of the proposed analysis and design
scheme is illustrated through the detailed simulation,
namely, the balancing of an inverted pendulum on a
cart in Section 4. Finally concluding remarks are
collected in Section 5.

2. PROBLEM FORMULATION

The fuzzy model represents a nonlinear system with
the following form of fuzzy rules.
i-th plant rule:

IF x is M; and %is M, and --- and x" ™ is M,
Then x™ = (a; + Aa; (1) - x + (b; + Ab())u +d, (1)
i=1,2,3,-r

where x=[x,x,-- -,x("fl) ]T is the state vector which is

assumed to be available and a,, Aa;(¢) e R™", b,
Ab;(t)e R and deR denotes unknown external
disturbance which belongs to L; space such that

j(;”d(t)zdt <o, )

Also, M is the fuzzy set and ris the number of

fuzzy rules. Also, Aa,(t) and Ab(7) denote the

norm-bounded time-varying modeling uncertainties
for system and input matrices, respectively. The TS
fuzzy model can be inferred as

MO i R (x){(a; + Ay (1)) - x+(B; + Ab; (D))} +d,

i=1
(3)
where
w,(x)

w0 =M, ), h,-(x)=2 o
J=! w.(x) .

M,-j(x(j'l)) is the grade of membership of T M. It
is assumed in this paper that

wi(x)20, i=L2,--,r , Dw((x)>0.
i=1

Therefore,

)
R(X)20, i=1,2,,r , Yhx)=1.
i=l

For (3) to be controllable, Zh,.(x)bi #0 for x in

i=l
a certain controllability region U, c R"is required. If

this controllability requirement is satisfied and there is
no uncertainty in (3), that is, Aa, =0, Ab =0,
d=0,the following fuzzy feedback linearization
controller (4) can cancel the nonlinearity of (3) and
achieve exact linearization (5).

Y h(x)(@) —a]) x
u == , )]

Shb,
—al.x, (5)

where we use the same a,, b, and Ah(x) with the

x

fuzzy model (3) for all i and a, € R" is chosen

such that the exact linearized
asymptotically stable.

In practical application, however, uncertainty and
disturbances are inevitable. Therefore, the exact
linearization cannot be achieved.

Hence, for the robust stability, consider the

following control law (6),

system (5) is

(ah+ > B (0] —a') - x
u= i=1 - , (6)
D h(x)b,

where ap € R"is the appended input vector in order
to reduce the disturbance, which comes from the
uncertainties.

By substituting (6) into (3), the closed loop system
can be written as (7).

,
M =all x+ak x+ Th(x) An; (1) x
i=1

3" hy (0 Ab, (1)

+E= Y h()(agtag —a) x}+d

Z hi (x)b; =l ‘

i=1
=a§ -x+aN(t)T -X+d
@)
where

ay ()= ay + 3 h,(x) Aa, (1) ®)



Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization... 227

S hxALD) |
+ D B ()a - a)}
PIICLEN

In the next section, the robust stability analysis and
the design of a, for (7) is presented.

3. ROBUST STABILITY ANALYSIS AND
DESIGN OF FEEDBACK LINEARIZATION
CONTROL

3.1. Robust stability analysis

In order to give the numerical L; stability condition,
the closed system (7) is cast into Diagonal Norm-
bound Linear Differential Inclusions (DNLDI).
DNLDI is a linear system with scalar, uncertain and
time-varying feedback gains, each of which is
bounded by one. The DNLDI formulation of the
closed system (7) is given by

x=Ax+Bp+w, p=V({t)Cx, z=Dx, (11)
where
[0 0 0]
0 1 . 0
0 0 o - 1
A= : . : eRnX",
0O 0 0 1
Lt Qa2 Gus D |
(0 0 0 - 0
0 0 0 - 0
B=/0 0 0 - 0|eR™,
111 1
(c, 0O 0 --- 0
0 ¢, 0 - 0
C=|0 0 ¢ 0 |eR™, (12)
|0 0 0 - ¢
s 0 0
0 8@ 0
A= 0 0 S - 0 |,
0 0 0 - 80
(t
HA-/—() lfC’j¢0
o,)=3 ¢
0 if ¢,=0
constraint :

| ay@) ] < ¢, (i=1,2,-,n) (13)
or equivalently,
p'p < x"C'Cx, (14)
0
0

D=I1cR™, peR’", zeR",w=|0|eR". (15)
d
Remark 1: In (12), ¢, (j=12,--,n) can be any

non-negative real scalar satisfying the constraint (13)
or C can be any diagonal positive semidefinite matrix
satisfying the constraint (14). Note that ¢; can be set

to 0, only if there is no uncertainty in the
corresponding a,, i.e. ay(f)=0.In Appendix A, the
( j=12,--,n ) for the
stability analysis is proposed.

In (15), w is the unknown external disturbance
input which belongs to L, space such that

selecting method of c,

I:WTW dt <o (16)

and z is the output which is the same as the state x .
Theorem 1 [9]: The system (11) is L, stable and its

L,gain (10) is less than yif there exist P >0and
7 2 0 such that

A"P+PA+D'D+:C'C PB P
B'P -1 0 [|<0. (17)
P 0 -

Proof: Now, suppose there exist a quadratic
function V(x)=x"Px, P>0, and y>0such that
forall ¢,

iV()q{) +2"z2-y’wiw=

dt (18)
x"(A"P+PA+D'D)x +2x"PBp + 2Pw — y’w'w

forall xand psatisfying p"'p <x"C"Cx.
Using the S-procedure of LMI techniques[9], (18)
is equivalent to the existence of Pand 7 satisfying

A"P+PA+D'D+7C"C PB P
B'P -r71 0 |<0.
P 0 -1
To show the L, gain (10) is less than y , we

integrate (18) from 0 to7, with the initial condition
x(0)=0, to get

VT + [ (2w w)dr <0 (19)
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Since V(x(T)) 20, this implies

. _ o

Iwl,

U
Therefore, from the Theorem 1, we can obtain the
upper bound on the L, gain by solving the following
EigenValue Problem (EVP).
minimize y

P>0, 720,

ATP+PA+D'D+:C"C PB P @1
B'P -1 0 |<0.
P 0 -1

Based on the Theorem 1, the analysis procedure can
be summarized as follows.

Step 1: Cast the closed system (7) into DNLDI (11).

Step 2: Select ¢; (j=1,2,---,n) as in Appendix A.

Step 3: Check the stability condition of Theorem 1.
This can be easily done by solving the feasibility
problem.

Step 4: If there exists a feasible EVP solution y,,,,

then the closed system is robust stable in L, sense and
L, gainisless than y_ .

Also, we can easily extend the derived input-output
stability condition to Lyapunov stability for the
unforced system by the following lemma.

Lemma 1: x=0 is a globally attractive equilibrium
of the unforced system of the closed loop system (7)
(i.e., d=0) if there exist P>0 and r>0 which
satisfy LMI (22).

A"P+PA+D'D+:C'C PB P
B'P -z 0 |0 (22)
P 0 I

Proof: The proof of this lemma will be given in

Appendix B.

3.2. Robust stable design
Our problem is that of determining the L, robust
stability range of a, ( j=1,2,--,n ) which can

maintain the L, gain of the closed system (7) within
the specified upper bound 7, . From the constraint

(13), c;can be regarded as the upper bound on
’aNj (t)l (7=1,2,---,n) which was derived in Appendix A.

Therefore, in order to determine a robust stable
range on a,, we need to find the largest possible
¢, for which Theorem 1 holds with y =y, .. should

be obtained. This can be obtained by solving the
following optimization problem (23).
maximize ¢,c,, ¢

n

subject to
P>0, 720,
ATP+PA+D"D+:CTC PB P
BTP —1 <0 ,(23)
P |

However, it is difficult to solve the multiple
parameter optimization problem (23) straightforward.
Instead, by splitting (23) into the single parameter
optimization problems (24) for each i, it is possible
to derive the feasible solution of (23) from the
solutions of (24).

maximize c,

subject to
Pi >0 s 7§ >0 s
AP +PA+DD+7,¢TC; BB P
T (24
B Pl —Tl'I 0 < 0,
2
B 0 —7maxl

where C, =diag(0,---,0,c, 0,---,0)

If we define 4 =c’, the optimization problem

(24) can be viewed as the Generalized Eigen-Value
Problem (GEVP) (25).
maximize A

subject to
7,20
P.>0, 420
ATP,+PA+DTD+7r,cTC; PB P,
B'P, -1 0 |<0,(25)
P 0 —Vmaxd

where E, =&. Thus, the above GEVP can be easily
C.

i

solved by well-established LMI optimization
techniques [10].
Denote  the  solutions of GEVP (25)

as A (i=1,2,---,n) . Then, the solutions of the
optimization problem (24) can be written as ¢, = ﬁ
(i=1,2,---,n). Now, it should be noted that E, Z,---,?

can not be a feasible solution of the optimization
problem (23).

n

(e 0 0 - 0]
& 0 n
For, C=|g 0 ¢ -. 0|=2.C, (26)
; i=1
[0 0 0 - ¢
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C. =diag(0, -, 0,2,0,-, 0) .
where ' fag (0, K ), it can not be
—i-l1>«n-i—>
guaranteed (17) holds. Thus, some modifications are
needed to obtain a feasible solution. The modified

C™ can be written as

[ 0 o 0]
o g 0 - 0
C'=l¢g o E e 0
0 0 0 - c_J
Te 0 0o - 0 @7
Co NER 0
== o 0 Juq 0
T :
=1 ——
i 0 0 0 T,¢,

where T, denotes z, corresponding to 4 or ¢
(=12, ,n).

In Theorem 2, it is shown that Theorem 1 holds for
C" in(27).

Theorem 2: For C" in (27), there exists P >0
and 720 which satisfy the LMI L, stability
condition as.

e
A"P+PA+D'™D+1C" C" PB P
B'P -1 0

P 0 2.1

Proof: Since ¢, (i=1,2,",
optimization problem (24), the foliowing holds for all /

n) is the solution of the

A"P,+PA+D'D+T.C"C; PB P,
B'P, -ul 0
P, 0yl

<0,(29)

where Fidenotes P, corresponding to A, or ¢ (=

1,2,-:-,n).
Hence, from the property of the negative semi-
definite matrix (30) also holds.

AP +PA+D'D+TG C; PB P
_iz B'P, S S
P, 0 -7t

<0.G9

By rearranging the summations, (30) becomes

'I'"Fi "Fy T "‘t_T_ "Fi nF.
A (;;)+(;7)A+D D+(§‘;)Ci C (27)3 (Z:;)

=P i, 31
BT(Z‘:%) —(z::’—])l 0 <o .( )
HR 0

Using the property of C_i, it can be easily shown
that

. —

2 =<Z\F G ><Z o ®
j i=1

i=1

holds.
Employing (31), (32) can be written as

A‘(Z )+(2—)A+D D+(Z <G )(2( C) (Z B (Zﬂ

=l

BT(Z,;) —(le;)l 0
(Z‘;) 0 ()
<0. (33)
Let us choose
P = i% and 7 = ii—’ 34)

Using (27), (34) and (33) can be expressed as

e
ATP+PA+D'D+:C" C* PB P
B'P —71 0
P 0 !

<o- (35)

Therefore, for C” in (27), there exists P>0 and
>0 which satisfies LMI L, stability condition (28). I

Since Theorem 2 holds for C" in 27),
e cy,cl can be a feasible solution of the

()=
1,2,---,n) can be used as the largest possible
¢; (i=1,2,---,n) for which Theorem 1 holds.

Thus, using the admissible bounds of |aNj (t)| with

optimization problem (23). Therefore

respect to a, , the robust stable range of a, can be
expressed by the following set representation (36).

ag; ‘ lale +mlax\Aa,~j(t)|

max |Ab; (1)|

~ 36

i el o < of | O
1

J=L2-n

The control design procedure is summarized as
follows.
Step 1: Cast the closed loop system (7) into DNLDI

(11).
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Step 2: Solve the GEVP (25).

Step 3: Find the stable range (36) of ag; from C”
in (27)

Step 4: Select proper ag; in the set (36).

4. SIMULATIONS
Consider the problem of balancing and swing-up of

an inverted pendulum on a cart shown in Fig. 1. The
equations of motion [3] for the pendulum are

= (37)
Xy =f(X)+g(X)u+d(r)
_ gsin(xl)—amlxg sin(2x,)/2 —acos(x;)u T d()

41/3—aml cos* (x))
where x=[x x,]' and x denotes the angle (in
radians) of the pendulum from the vertical, and x, is
the angular velocity. g=9.8m/s” is the gravity constant,
m is the mass of the pendulum, M is the mass of the
cart, 2/ is the length of the pendulum, u is the control
force applied to the cart (in Newtons). d(f) is the

. We choose, m =

external disturbance and a =
m+

2.0kg, M = 8.0kg and 2/ = 1.0m in the simulation.

The dynamic equations (37) can be approximated
by the following two fuzzy rules [11] and the
membership functions used in this fuzzy model are
shown in Fig. 2.

Rule 1: IF x is about 0
THEN %=(a; +Aa (1)) -x+ (b +Ab () u+d
Rule 2 : IF x is about + % ([xl < 12[_) (38)

THEN i=(a,+Aay((t)" -x+(by +Aby (1) u+d

| ~7 |
M <+ u
[ ]
Fig. 1. The inverted pendulum system.

/RuleZ \

-90 0 x1 90[deg.]

Fig. 2. Membership functions.

(38) can be inferred as

= ihi(x){(ai +Aa; () x+ (b +Ab (O)u | + d,
i=l
(39)

2
where w,(x)= HMij xY™My, h(x) = ZW,-(X) and
=l

J Zw,(x)

a, =[—g— o}=[17.29 0],
41/3—aml

a,=| 28 o|=[935 0],
7(4l/3—amlf”)

b= = 0.1765,
4l /3 —aml

b=-—239 ___ 002
41/3—aml f’

We assume that Aa,, Aa,, Ab,, Ab,are unknown

but bounded as follows:
-1<Aaq,<1,-05<Aq, <05,

-1<Aa, <£1,-0.5<Aa, £0.5,
-0.001 < Ab £0.001, -0.001<Ab, <0.001.

In the following analysis and design section, we use
the feedback linearization control law as

(a +3 h, ()@, —a) x
u= il _ (40)
3 by (%),

and then, the closed loop system by substituting (40)
into (39) yields

¥=a, x+a,0) x+d,

(41)

where a,(f) = a, + ihi(x) Aa, (1)

Zr:hi(x)Ab,-(f) ,
+ {2 h (0@, tag—a,)}
Z h[(x)bi -

4.1. Robust stability analysis

The robust stability of the feedback linearization
control system (41) with a,=[-1 -1]and a, =[-3 -3]
is analyzed.

Step 1: Represent the closed system (41) into the

DNLDI (42).
x=Ax+Bp+w, p=A()Cx, z=Dx, 42)

where
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a0 U go[0 0] [ O
I P K S U e I P R S
ay; (1) .
s ~ —— if ¢,;#0
A(t)“[ 0 52(1)}’5-’(”_ 00, if ¢, =0.

constraint: |a, (/)| < ¢, (i=1,2) or equivalently, P'P
<x'C'cx.

Step 2: Select ¢, (i=1,2) by

max maix | Abz(t) |
¢ =|ag |+ 7 1 Aa, ()| + min

c b
(™ a, +a,, —a,|)=8.088,

max maiX | Abl(t) I

C=|ap, [+ " [Aa, () |+ ———7—
by
(m“i"|a“+a“—ai2|)=4.268.

Step 3: Solve the following GEVP (44) using the
interior point method of LMI techniques [10,15].
Minimize A

P>0,7>20,
ATP +PA+D'D+:CTC PB P
T (44)
BTP <1 0 |<o.
p 0 %1

As a feasible GEVP solution, we obtain
¥ oin=0.0381 with 7=0.0231 and

50103 101919 (5)
10.1919  21.4886

Step 4: Since there exists a feasible EVP solution
Yo > 0, the closed loop system (41) is robust stable

in L, senseand L, gainislessthan y_, =0.0381.

4.1. Robust stable design

Consider the design problem for a,,, j=1,2, for the
feedback linearization control system (41) with a,=
[-1-1].

Step 1: Cast the closed loop system into DNLDI.

This step is the same as step 1 in the analysis part.
Step 2: Solve the GEVP (25) for j=1,2 Using

the GEVP solver [15], we have
Forj=1:4 =133.3332, ¢ =11.547, 7, =0.0015,

(46)

5 _[42965 06127
"10.6127 54184 |°

For j=2 : 4, =555.5556, ¢, =23.5702, 7, =0.0015,

— |5.4246 3.7481
sanie ] o

27| 37481 43813

where y =y, =0.01was specified.
Step 3: Find the stable range of @, from C, .
Compute C, as

A p N Ly

Lo Cr \/f? 0 V&g

=i (48)
[8.165 0
Lo 16.667}'

Therefore, the robust stable ranges of can be
expressed by (49).

max|Abl- (t)|
|aR1|+max|Aal~1(t)|+ L -
apy i m;n|b,-|
(max|ag, +ag, —a;|) <8.165
i (49)
max |Ab; (1)|
|aR2|+m?1X‘Aal~2(t)|+ d

gy miin |bl-|

{max|ay, + agy — a;[) <16.667
1

Step 4: Select proper a,, in the set (49).

Fig. 3 shows the region of a, and a,, from the
obtained (49), where we choose the parameters as
ap=-2.5and a,,=-8.

In the computer simulation, as a disturbance d(¢)
which belongs to L, space, the signal shown in Fig. 4

is used. Figs. 5 and 6 illustrate the simulation results
in which the initial condition is zero. In Figs. 7 and 8,
the energy of the disturbance and the output are
plotted with respect to time, respectively.

L; norm of the input and output can be computed as

Fig. 3. Region of a, and aq,,.
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[wl, = fowWTW dt =f:d ()*dr=10 (50

o, = |2 zdr =[x xdt =0.0858 . (51)
Thus L; gain is

wld: _ ,

A 0.00858. (52)

The simulation results illustrate that the closed system
(41) is robust stable in L, sense and L; gain is less than

0.01 which is specified in the design procedure, Step 2.

Also, in order to analyze the Lyapunov stability, the
simulation results for the unforced system, i.e.

d(t)=0 and the initial condition X, =[1 0] are
presented in Figs. 9 and 10.

1.5 T H T T T

4}

o5 Feevinne Lermver ST, .

o i i i
a 5 10 15 Py 3 30 E 40
time

Fig. 4. External disturbance.

007 T T T T T
0.08
0.0s

0.04

s

003
0.02f---+

om

o

01

0.08

008

0.04

0,02

1]

002

.08 p--§-

Q.05

Fig. 6. Simulation result of state.

tims

Fig. 7. Time variation of external disturbance energy.

0.1 T T r ; T T T
: : : : ; : :

0.0% .......,%..u..,,f,.‘

1

08 .....E.
D8t e
07F-
0B -
R ST ,.,'
0.4
03
0.2

0.1

Fig. 10. Simulation result of state x, (unforced system).
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5. CONCLUSIONS

In this work, we have presented the LMI-based L,
robust stability analysis and design method for the
fuzzy feedback linearization control systems. The
plant was represented by well-known TS fuzzy model
and the analysis and design problems was numerically
solved by casting the closed loop system into DNLDI
and GEVP form. In the examples, the fuzzy feedback
linearization controller was developed efficiently and
the validity of the proposed analysis and design
scheme was shown.

APPENDIX A
Although ¢, (j=1,2,---,n) can be any positive real

scalar satisfying the constraint (13), ¢, (j =12, --n)
should be chosen as the minimum upper bound for
‘aNj (t)‘ to avoid the conservative analysis. In order to

obtain the minimum upper bound for |aNj(t) , (8) is

written in the component form as in (A.1).
ay () =ag + Zhi(x(t))Aaij ) (A.1)
i=l
2 (X(O)AB(E)
i=]

+E Y h(x(O)ay +ay —ay),
Zh,-(X(t))b,- -

(j=1925.."n) .

Then, the following inequality (A.2) holds for all j in
which we used basic assumption,

ihi (x())=1 and maxh(x(1)=1.

+

laM(t)IS‘ale—i—

3 A (x(0)Aa, (0

S (A (1) | (A2)

, 2 (x(O)ay +ay —a,)|
PIICIO)

The second and third terms in the right side of (A.2)
satisfy (A.3) and (A.4).

2 b (x(t)Aay ()| < max|Ag, (1)| (A3)

> A (AL
o> h(x(O))a, + ay —a;)

, (a4)
> hx(ep,

max lAbl. (t)|
< W(m?xpdj +ay —a, I)
Then, the following inequality holds for all ;.
‘aNj (t)| < |aRj ‘ +max ‘Aalj (t)‘

max|Ab, (1)

W(m?x|% +ay —a; ‘) .
; i
1

Therefore, we choose
C, = }akj‘ +max ’Aa,.j(t)‘

max |Ab, ()| (A.5)

(maxla +a A—a..l)

maX|b1| i 4 R i
1

j=12,-n

for less conservative stability analysis.

APPENDIX B
To prove Lemma 1, we need the following Theorem.
Theorem 3 [16]: Consider the system,

x = Ax(?) + Be(?), y(?) =Cx(1),
e(r) =u() - @[, y(1)], (B.1)

where x(t)eR",u(t)eR" ,y(t)eR'and A ,B,C
are matrices of compatible dimensions and
®:R xR — R" satisfies ®(1,0)=0,v¢>0. If the
following three conditions are satisfied, x=0 is a
globally equilibrium of the unforced system.
i) is globally Lipschitz continuous; i.e., there exists
a finite constant 4 such that

loy) -y, < uly, -y, [, Ve 20,vy,,y, e R’
i1) the pair (A,B) is controllable, and the pair (C,A)
is observable.
iii) the forced system is L, stable,
Proof: Proof of this theorem can be found in [16].
In order to prove Lemma 1, the closed loop system (7)
is expressed as (B.1), where

1 0
0
A= 0 0 ,
L%1 Qg2 943 "t Qgp |
0 0 0 0
0o 0 0 -
B={0 0 0 - 0], (B.2)
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1o ]
0 1
C=(0 0 01,
00 0 - 1]
(a0 0 - o0 ] [o]
0 ay,® 0 0 0
o= 0 0 a0 0 |u=|0
| 0 0 0 an, (] | ~d]

Then, since a,;is bounded for all jand ¢, we can
assume that ||@(1)|<p for all ¢, where u is a

finite constant. Therefore, the following inequality
holds for all ¢>0and forall y,,y,.

le@y, —@@)y,| =|e®y, -y,
<@y, - y.) < aly, -v.|-

Therefore, ®(¢) is globally Lipschitz continuous

and the pair (A,B) and the pair (C,A) can be easily
shown to be controllable and observable respectively,
independent of a,. Finally, if there exist P>0 and

7 > 0 which satisfy the LMI (B.4).
|A"P+PA+D"D+7C"C PB P
B'P I 0
P 0 I

(B.3)

<0 (B.4)

then, the forced system (i.e.d #0 ) is L, stable by

Theorem 1.
Therefore, by Theorem 3, is a globally attractive
equilibrium of the unforced system of (7) (i.e.d = 0). U

APPENDIX C
* S-procedure of LMI theory [9]
Let K, F, be quadratic functions of the variable

£eR" such that
F()= ;T’I‘fé/+2uiTé,+vi i=0,.,p T = TiT :

We consider the following condition on F,--, F .,

F(&)=0 forall & such that
F(&20, (C.1)

Obviously, if there exists 7, >0,--, 7,20 such that

i=0,L,p.

P
forall &,F(O)-Y.0F ()20, (C2)
i=|
then (30) holds or equivalently (32) holds.
T, u, 2 T, u.
-yl . |=0
[uOT vo} ; ’[uiT v,.j| (€3)
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