• Title/Summary/Keyword: linear uncertain system

Search Result 287, Processing Time 0.022 seconds

The Interpretation Uncertain Bound for the Uncertain Linear Systems via Lyapunov Equations (Lyapunov 방정식을 이용한 불확실한 선형 시스템의 섭동 유계 해석)

  • Cho, Do-Hyoun;Lee, Sang-Chul;Choi, Jin-Taik;Lee, Sang-Hun;Lee, Jong-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.485-486
    • /
    • 2007
  • In this paper, we use Lyapunov equations and functions to consider the linear systems with perturbed system matrices. And we consider that what choice of Lyapunov function V would allow the largest perturbation and still guarantee that V is negative definite. We find that this is determined by testing for the existence of solutions to a related quadratic equation with matrix coefficients and unknowns the so-called matrix Riccati equation.

  • PDF

A Study on Robust Stability of Uncertain Linear Systems with Time-delay (시간지연을 갖는 불확정성 선형 시스템의 강인 안정성에 관한 연구)

  • Lee, Hee-Song;Ma, Sam-Sun;Ryu, Jeong-Woong;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.615-621
    • /
    • 1999
  • In this paper, we consider the robust stability of uncertain linear systems with time-delay in the time domain. The considered uncertainties are both the unstructured uncertainty which is only Known its norm bound and the structured uncertainty which is known its structured. Based on Lyapunov stability theorem and{{{{ { H}_{$\infty$ } }}}} theory known as Strictly Bounded Real Lemma (SBRL), we present new conditions that guarantee the robust stability of system. Also, we extend this to multiple time-varying delays systems and large-scale systems, respectively. Finally, we show the usefulness of our results by numerical examples.

  • PDF

Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay (시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems

  • Xu, Jianming;Sun, Mingxuan;Yu, Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2008
  • This paper addresses the synthesis of an iterative learning controller for a class of linear systems with norm-bounded parameter uncertainties. We take into account an iterative learning algorithm with current cycle feedback in order to achieve both robust convergence and robust stability. The synthesis problem of the developed iterative learning control (ILC) system is reformulated as the ${\gamma}$-suboptimal $H_{\infty}$ control problem via the linear fractional transformation (LFT). A sufficient convergence condition of the ILC system is presented in terms of linear matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is constructed using a convex optimization technique with LMI constraints. The simulation results demonstrate the effectiveness of the proposed method.

An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

Robust Fault Detection Method for Uncertain Multivariable Systems with Application to Twin Rotor MIMO System (모형헬기를 이용한 불확정 다변수 이상검출법의 응용)

  • Kim, Dae-U;Yu, Ho-Jun;Gwon, O-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • This paper deals with the fault detection problem in uncertain linear multivariable systems and its application. A robust fault detection method presented by Kim et a. (1998) for MIMO (Multi Input/Multi Output) systems has been adopted and applied to the twin rotor MIMO experimental setup using industrial DSP. The system identification problem is formulated for the twin rotor MIMO system and its parameters are estimated using experimental data. Based on the estimated parameters, some fault detection simulations are performed using the robust fault detection method, which shows that the preformance is satisfied.

  • PDF

A Fault Detection System Design for Uncertain Fuzzy Systems

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • This paper deals with a fault detection system design for uncertain nonlinear systems modelled as T-S fuzzy systems with the integral quadratic constraints. In order to generate a residual signal, we used a left coprime factorization of the T-S fuzzy system. From the filtered signal of the residual generator, the fault occurence can be detected effectively. A simulation study with nuclear steam generator level control system shows that the suggested method can be applied to detect the fault in actual applications.

Sliding Mode Observer for Uncertain Systems with Mismatched Uncertainties: An LMI Approach (LMI를 이용한 불확실한 시스템의 슬라이딩 모드 관측기 설계)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1757-1758
    • /
    • 2006
  • This paper considers a method to design sliding mode observers for a class of uncertain systems using Linear Matrix Inequalities(LMI). In an LMI-based sliding mode observer design method for a class of uncertain systems the switching surface is set to be the difference between the observer and system output. In terms of LMIs, a necessary and sufficient condition is derived for the existence of a sliding-mode observer guaranteeing a stable sliding motion on the switching surface. The gain matrices of the sliding-mode observer are characterized using the solution of the LMI existence condition. The results are illustrated by an example.

  • PDF

Robust Positive Real Control of Linear Systems with Repeated Scalar Block Parameter Uncertainty (반복된 스칼라 블록 파라미터를 포함한 불확실성을 갖는 선형 시스템의 가인 양실 제어)

  • 이보형;심덕선;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.574-578
    • /
    • 1998
  • This paper considers the robust positive real problem for linear systems with linear fractional-type norm-bounded repeated scalar block parameter uncertainty. It is shown that the robust positive real problem can be converted into the standard positive real problem without uncertainty that can be used for the analysis of the given uncertain linear system and the synthesis of a controller that robustly stabilizes and achieves the extended strict positive realness property of the closed-loop transfer function. These results can be also applied to the linear system with general structured uncertainty containing repeated scalar block parameters and are extensions of the previous works that consider only norm-boundedness of the affine unstructured uncertainty.

  • PDF