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LMI-Based Synthesis of Robust Iterative Learning Controller
with Current Feedback for Linear Uncertain Systems

Jianming Xu, Mingxuan Sun, and Li Yu

Abstract: This paper addresses the synthesis of an iterative learning controller for a class of
linear systems with norm-bounded parameter uncertainties. We take into account an iterative
learning algorithm with current cycle feedback in order to achieve both robust convergence and
robust stability. The synthesis problem of the developed iterative learning control (ILC) system is
reformulated as the y -suboptimal Hs control problem via the linear fractional transformation

(LFT). A sufficient convergence condition of the ILC system is presented in terms of linear
matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is
constructed using a convex optimization technique with LMI constraints. The simulation results
demonstrate the effectiveness of the proposed method.

Keywords: He control, ILC, LFT, LMI.

1. INTRODUCTION

Iterative learning control (ILC) is a technique to
control a system carrying out a task over a finite time
interval repetitively such that the system output
accurately tracks a specified reference trajectory.
Motivated by human learning, the basic idea of
iterative learning control is to use an iterative
procedure to calculate the input signal from the
previous operation data such that the tracking error is
gradually reduced. Since the introduction of iterative
learning control (ILC) methodology by Arimoto et al.
[1], the general area of ILC has been the subject of
intense research effort both in terms of the underlying
theory and engineering practice [2]. Iterative learning
control was initially developed as a feedforward
action applied directly to the open-loop system.
Although the pure feedforward learning control
scheme is theoretically acceptable, it is unlikely to be
applied to real systems without a feedback control.
One reason is that it may generate harmful effects if
the open-loop system is unstable or exists uncertainty.
In addition, the tracking error may possibly grow
quite large in the early stages of learning, though it
eventually converges after a number of trials. Thus, in
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real environments, a current feedback control is
commonly employed along with the iterative learning
control for system robustness enhancement and better
performance [3]. The combination of ILC with current
feedback is typically done as a feedforward-feedback
configuration where the current feedback controller
ensures closed-loop stability and suppresses
exogenous disturbances and the iterative learning
controller provides improved tracking performance
over a specific reference trajectory.

Most of the existing results have concentrated on
deriving new algorithms and analyzing their
convergence properties. Few results on ILC synthesis
have been reported especially under model
uncertainties in literature. Amann et al. proposed a
two-step design procedure based on He optimization
[4]. De Roover synthesized an iterative learning
controller based on H. control under unstructured
uncertainties [5]. Moon and Doh [6,7] derived a
sufficient condition for convergence of the iterative
process in the presence of plant uncertainty. An
iterative learning controller that satisfies the
convergence condition can be obtained by p -

synthesis procedure called D-K iteration [8]. However,
the D-K iteration cannot guarantee the global
convergence, and usually leads to a high-order
controller that is not easy to implement in the practical
situation. It has recently been emphasized by Boyd et
al. that many problems arising in system theory can
be cast into the form of linear matrix inequalities
(LMlIs) [9], which belong to the group of convex
problems, and thus one can efficiently find feasible
and global solutions to them via interior-point
methods. To the best of our knowiedge, the ILC
design problem for linear uncertain systems has not
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been investigated via LMI approaches.

In this paper, based on the frequency domain
representation, we deal with the synthesis problem of
the ILC algorithm with current feedback that assures
convergence for a class of linear systems with norm-
bounded time-varying parameter uncertainty. The
problem is first reformulated as a 7y -suboptimal He
control problem via the linear fractional transforma-
tion (LFT). Then a sufficient convergence condition is
established for the ILC system in terms of LMIs. The
solutions of the LMIs can be used to construct a
suitable ILC algorithm. Furthermore, a convex
optimization problem with LMI constraints is
formulated to design the ILC algorithm that achieves
fast convergence speed of the resulting ILC system.

2. PROBLEM STATEMENT

Consider an iterative learning control system with
current feedback shown in Fig. 1, where y,(¢) is the
desired output trajectory over a finite interval
tel0,T], y (1), u,(t) and e, (f) are the system

output, the control input and the tracking error at the
k th iteration, respectively. P(s) is the controlled

plant, and can be described by the following state
space model

() = Ax(t) + Bu(?)
=[Ay + Ad]x(t) +[By + ABlu(2),
¥(1) = Cx(v),

M

where x(#) e R™, u(t)e R?, y(tr)e R? denote the
state, the control input and the system output,
respectively, A4y,By,C are known real constant
matrices with appropriate dimensions, A4, AB are

matrix-valued functions representing time-varying
parameter uncertainties in the system model, and are
assumed to be of the following form:

(A4 AB]=DFQE, K], @)

where D,E|,E, are known real constant matrices
with appropriate dimensions, which represent the
structure of uncertainties, and F(r)e R™/ is an
unknown matrix function with Lebesgue measurable

Fig. 1. An ILC system with current feedback.

elements and satisfies
FT(OF(r)<I, 3)

where / denotes the identity matrix of appropriate
dimension,

Consider the ILC algorithm with current feedback
given in the frequency domain as

Ugs1(8) = L, (YU () + L () Eg (s)
+ C($)Ep 41 (8)s

where L, (s) and L,(s) are the learning controllers,
C(s) is the feedback controller. To
implement in the practical situations, all controllers
should be in RH,, space.

In the formulation of the synthesis problem of the
ILC system, we make the following assumptions.
Assumption 1: The initial state of the plant P(s)

4

current

is invariant with respect to k, so Yko (s)=YO(s) for
k=12,.., where Yko(s)
transform of y;(0).
Assumption 2: Let L, (s) be /,(s)] where
L,(s) is a type of low-pass filter, with a cut-off

denotes the Laplace

frequency ®, being higher than the tracking
bandwidth, such that ||,(jo)|=1, Veel[0,w,]
and ||/,(jo)|<1, Vo>ao,.

Lemma 1 [7]: Suppose that Assumptions 1 and 2
are satisfied and Y;(s),Y’(s)e H,, Then the ILC
system in Fig. 1 is L, convergent with remaining
error if the A, norm of stable L(s) is less than 1,
where

L(s) = (1+ P(s)C(s)) " (L, (5) = P(S)L,(s)).  (5)
Moreover, the remaining error E_(s) is
E,(s)= klglgo (Yg(8) =Y, () t6)
= (1= L(s))" Dy (s)(¥y ()~ Y°(s)) € Hy,
where -

Dy(s)=(1+P(s)C(s) " (I - L, (5)). (7)

For given L, (s), the synthesis problem of the
proposed ILC system is converted into solving C(s)
and L,(s) from the following (sub)optimal FH
synthesis problem:

12+ Ps)C()) ™ (L, ()= P()Lo(9)) L= <1.(8)

Note that the smaller is vy, the faster is the
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Fig. 2. Diagram representation of F,;(G,K).
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convergence rate of the error, because

([ (Exs1(8) = Eo () 2=l L) [lo [ £ (5) = Eo(5) [l

%)
y can be used to indicate the convergence rate of the
[LC system. To solve the problem described in (8), for
practical situations, we adopt the approach suggested
in Zhou et al. [8]. Therefore, the ILC synthesis
problem is reformulated in the standard plant format,
depicted in Fig. 2.

Within this framework, tools are available for
computing a stabilizing K that minimizes || 7 ||
(with Ty; being the transfer function from w to
z). To formulate the ILC synthesis in this standard
plant framework, this transfer function from w to %
is considered, given by the lower linear fractional
transformation (LFT) of G and K. If G is
partitioned as:

G, G,
G:{ ! ‘2}, (10)
Gy Gy

then the lower LFT of G
F,(G,K), isdefined as:

and K, denoted

F/(G,K) =Gy, +GaK(I = GpK) ' Gyy = Ty .(11)

Clearly, L(s) can be described in this form, by taking:

[ L,(s) P(s)
G,_{Gn G12}_ L
~ -[[-L.0] [-P&]| (2
Gy Gy { . } { 0 }
and
K::[C(s) L(s)]. (13)

It should be noted that for solution of the synthesis
problem using the standard plant format, if the

learning controller L,(s) is described by the
following state space equation:

Xu= Auxu + By,

(14)
Yu = Cuxu +Dyu,,

u, € NP,

control input

vy, € RP denote the
u
output,

where x, e R"™2,

state, the and measure

respectively. Then the plant G 1is described in state
space coordinates:

):éu = A])? + BlﬂH— Bzﬁ,
F=CF+ Dy, (15)
5} = Cz)? + Dzlw,

where ¥=[x" xI ) eR" (n=n +ny), d=ucR?,
w=u,cR?, ZeR? and je R2P  denote the state,
the control input, the disturbance input, the controlled

output and the measure output of the system G,
respectively; and

A 0 0
AIZ ’B[=

0 4, B,
C—_C_C”D—DD—"D“
2= 0 0 ’ 11 — Hu- 21 — _J .

As a consequence, the synthesis problem of the ILC
system is reduced to a vy -suboptimal H, control

problem, i.e., to design an output controller (13) such
that || T;; =7 <1 for the system (15). In this paper,
we solve the problem via an LMI approach.

In the proof the main results, we will need the
following lemmas.

Lemma 2 (the Bounded Real Lemma) [10]:
Consider a continuous time transfer function 7'(s) of
realization T(s)=D+C(sl — A)"'B, the following
statements are equivalent:

(i) |D+C(sI-A)"'B|l,<y and 4 is stable;
(ii) There exists a symmetric positive definite solution
X tothe LMI:

ATx+x4 xB T

BTx -y DT |<o.
C D —yl

Lemma 3 [10}: Given matrices M, N and

symmetric matrix S of appropriate dimensions, then
S+MFN+NTFTmT <o,

for any uncertain matrix F satisfying F Tr<1, if

and only if there exists a scalar € >0 such that

S+eMM” +£'NTN <0.

Lemma 4 [11]: Given a symmetric matrix
IeR™” and two matrices Y, ® of column
dimension m, consider the problem of finding some
matrix ® of compatible dimension such that
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I+¢7ed+ 0"y <.

Denoted by Ny, Ng any matrices whose columns
form bases of the null space of ¥ and @,

respectively. Then the above inequality is solvable for
® ifand only if

NiTING <0, NITINg <O.

Lemma 5 [12]: Given symmetric positive definite
matrices X,Y e R™”, then there exist matrices

M,N e R™P and symmetric matrices Z,W € RP*P
satisfying

X M o [ X MV Ty N
>0, =
A Mz N w
if and only if

X I
{I Y}>O, and rank(/ - XY) < p.

3. MAIN RESULTS

Theorem 1: Consider the system (15), the
continuous time vy -suboptimal /A, problem is
solvable if and only if there exist a scalar &> 0,
symmetric matrices R,S satisfying

AyR+RA] +eDDT RET RC[ B,

r ER -l 0 0
Q Q
Bl 0 DL —yI
<0, (16)
Sy + A5 S+ 'ETE, sB cI  SD
=T Bls I Dfy 0 |
G Dy —I 0
D's 0 0 -l
<0, (17)
R (18)
I S| 7
where
0] -~ [B] ~ [D 0
Ao= % . By=|"°|, D= ,
0 4, 0 0 0
a3 o 5[0}
Q=dz’ag{NR,1}, Ezdiag{NS,]}, NR and NS

denote bases of the null spaces of [ég Eg] and
[C5 Dy, respectively.
In addition, there exist vy -suboptimal controllers of

order h<n(reduced order) if and only if (16)-(18)
hold for a scalar £>0 and some R,S, which
further satisfy:

rank(l — RS)< h. 19)

Proof: Given any proper real-rational controller K
of realization

K =Dy +Cx(sI—Ag) 'By  (dx e ™)  (20)

a realization of the closed-loop transfer function from
W to Z is obtained as:

F(G,K) =Dy +Cy(sl - 4,)"' By, 1)
where
A+ B,DyC, B,C
o[ ATBDkG B K’Cdz[q o}
By G, Ak
B, + B,D¢D
cl:[ o 21} Dy = Dyy.
By Dy

Gathering all controller parameters into the single
variable

|4k By
G.{CK DIJ 22

and introducing the shorthand:
- |4 0 - |B| = 0 B
A = s Bl = s B2 = ’
0 O 0 I, 0
— |0 1| = 0
C= , Dy, =
c 0 Dy,

the closed-loop matrices 4., B,

., can be written gs:

Al = Z+§2®5, Bcl = El +Ez®521. (23)

C

From the Bounded Real Lemma, (20) is a 4 order
y -suboptimal controller if and only if the LMI

[((4+B,0C) x o
[( 20C _‘”j X(B, +B,0Dy) Ch
+X ,(4+B,0C)
(B,+B,0D,)T X, -yl D}
Ccl Dcl _YI
L

<0 (_24)
holds for some X, >0 in RAC+h) ‘



LMI-Based Synthesis of Robust lterative Learning Controller with Current Feedback for Linear Uncertain Systems 175

Since there exist time-varying parameter uncertain
matrices in the system model P(s), then the matrices 4,
B; can be written into:

A=4y+DFE,, B,=By+DFE,, (25)

where

_ T4, 0] = [0 5] = [D o
= , By = , D= :
o [0 0} 20 [1 o} {0 0

_ _[& 0] - [o &
F = diag{F,F F}, E1=[€] 0}, Ezz{o ’ﬂ

Substituting (25) into (24), using Lemma 3 and the
Schur complement argument, then the LMI (24) holds

for all F satisfying F TF<I if and only if there
exista scalar €>0, ©® and X, such that

m+¥, ev+o’e’y, <o, (26)
where
LXy+Xady XgBy Ch XuD E]
Bl X, -y D 0
= C, D, -y 0 0}
bTX, 0 0 -7 0
i b 0 0 0 -

‘YXC,:[EzoXcl 000 Eﬂ,
®=[C D, 0 0 0]

We can now invoke Lemma 4 to eliminate ® and
obtain solvability conditions depending only on g,

X, and the plant parameters. Specifically, let N‘Px,
and Ng denote matrices whose columns form bases

of the null space of ¥ X, and ©, respectively. Then
by Lemma 4 (26) holds for some © if and only if

Ni TNy, <0, NgIINg <0. (27)

Now, if we define ¥=[B,, 0 0 0 EI] and

Y =diag{X,1,1,1,1}, then ‘PXclz‘PY. Hence

cls

NqT,Xd = Y_IN.*, is a base of the null space of ¥y

whenever Ny is a base of the null space of ‘P.
Consequently,

T
N, TNy, <0

cl
is equivalent to
NEANy <0,

where

A= Hmrh

o R
X A+ 4X, B
Bf I
_ -1
- Cchcl Dcl
b’ 0
—
L EXa 0
Xg'ca D X3'El
D}, 0 0
—yI 0 0
0 -1 0
0 0 -el |
Furthermore, (27) is equivalent to
NLANg <0, NITINg <o0. (28)

Finding a positive definite matrix X, satisfying
(28) is awkward since it involves both X and its
can be done by

inverse simultaneously. This

partitioning X, and X, C_ll as

S N, [R M
XC] = NT « ’ Xcl = MT N ’ (29)

where R,Se®R™" and M,N e R,

Consider the first constraint N&ANy <0. With
the partition (29), A can be written into

[4R+RY A4M B  RCT
MT 4] 0o o M
Bl 0 -yl D
Al GR oM Dy I
b’ 0 0 0
0 0 0 0
ER EM 0 0
| 0 0 0 0 (30)
D o RET o]
0 o ME o
0 0 0 0
0 0 0 0
-7 0 0 0
0 -7 0 0
0 0 &l 0
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Meanwhile, from

6 7 060060 0 O 61)
185 00000 £ o
it follows that base of the null space of ¥ are of the
form

W 0 0
0 00

Ne={ 0 I 0|, (32)
Wy 0 0
L0 0 ]

T wrl
where Np .:[Wl Wz} is any base of the null

space of [fgg Eﬂ

Observing that the second row of Ny s
identically zero, and invoking Schur complement
argument again, the condition NgAN\P <0 can be

reduced to (16). Similarly, the condition N(TDANq, <0
is equivalent to (17). Hence X satisfies (28) if and
only if R,S satisty (16)-(17). Moreover, by Lemma 5
X, >0 isequivalentto R,S satisfying (18)-(19). 0

Theorem 2: Suppose that Assumptions 1 and 2 are
satisfied and  Y;(s),Y’(s)e H,. Then the ILC

system in Fig. 1 is robustly ¢, convergent with
remaining error and robustly stable for any uncertain
matrix F satisfying F TF <1, if there exist scalars
O0<y<]l, €e>0 and symmetric matrices R,S,
satisfying (16)-(19).

Proof: The constraint condition of Y (0<y<l1)
guaranteed the convergence of the ILC via Lemma 1.
Furthermore, by using Lemma 1 and Theorem 1, we
can directly obtain the results of the Theorem 2. O

Now we propose the following design procedure
for the controller (13).

Theorem 3: Consider the ILC system in Fig. 1 and
given £€>0, if the following optimization problem

min ¥y
RS
st (@) (16),(17),(18) 33
(i) 0<y<l

has an optimal solution y*,R,S, then the parameter
matrix @ of the controller (13) of order A=n is
derived in terms of the solvability to the LMI (26).
Proof: Since R,SeR”” and rank (/] -RS)<n,
the controller (13} of order A=n satisfy the rank
constraint (19). On the bases of Theorem 2, the

optimal convergence rate Y~ and matrices R,S can
be obtained by solving the optimization problem (33).
Furthermore, computing two matrices M,N e R™*
such that

MNT =71-RS, (34)

an adequate X is then obtained as solution of the
linear equation:

S I
NT 0 :Xcl

and the existence of a solution ® to the inequality
(26) can be guaranteed in virtue of Theorem 1. 0

Remark 1: Since the matrix inequalities (16) and

(17) contain & and &', respectively, the

optimization problem (33) can be solved by two steps
as follows:

Step 1: To solve the following optimization
problem

I R

, 35
0 uT (35

min vy
R, e

st.() (16)
(i) 0<y<l,

an optimal solution y*, R* and &" can be obtained.

Step 2: To solve the feasible problem about the
matrix inequalities (17) and (18) where the variables
R and ¢ are respectively substituted by R* and

" obtained in Step 1, a feasible solution § can be
given.

4. AN ILLUSTRATIVE EXAMPLE

To illustrate an application of the ILC technique,
onsider an annealing process model [13]. The thermal
processing setup is illustrated schematically in Fig. 3.
A controlled heater lamp heats the part in the furnace
and the furnace chamber.

For such thermal processing has two states: part

temperature Tp and furnace temperature Tp. This

process is a nonlinear system. For the application' of
the learning algorithm, this process is linearized

around the stationary point Tp =500°C and T =

500°C, leading a continuous-time linear uncertain
mode] described as (1), in which

~12960 12960 | [0
0.0950 —0.89501 "° {10001

c=[1 0], D{o—o;} E1=[~1 1], =3

A0=



LMi-Based Synthesis of Robust Iterative Learning Controiler with Current Feedback for Linear Uncertain Systems 177

®1 Heater

ZIN

Input

y
Heated Part >
Output
Furnace
Fig. 3. Thermal process overview.
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Fig. 4. Reference temperature trajectory.

and the system output y =Tp is the part temperature

that is assumed to be directly measured. In this
simulation, the control goal is to ramp the part

400°C in 100sec,
maintain it at 400°C for 100sec, then ramp the

temperature from 0°C to

temperature up to 800°C in 100sec, stay there for
200sec, and finally, ramp the temperature down to

400°C in 100sec and stay there for 100sec, as Fig. 4.

1,(s) is chosen as a first order low-pass filter and
L,(s) is described by the state space equation (14),
in which

A, =-50,B, =1,C, =50,D, =0. (36)

By applying Theorem 3 and solving the
corresponding optimization problem (33), we obtain
vy =0.6762,

fe
CK DK
—5849.4 27376 28547 194870  3.3497
1818.2 -9252.6 -6431.9 -71146 -221.05
7| 15531 78530 -53022 —606444 —-338.03
-23.651 110.7 -115.44 788.03 0.013454

Thus, it follows from the above equation, (5), (13)
and (20) that

78857 +1.112x10%5” +5.639x10% s + 4324 x10°

C(s)
52 +6.812x10% 5% +7.434x10%5 +3.694x10'°
37
0.013455% +153905% — 2.7x10%s - 2.103x10°
Le(s) =

57 +6.812x10%5% +7.434x 1085 +3.694x10'°
(38)
and the Bode Diagram of L(s) as Fig. 5.

Fig. 6 shows tracking errors at 1st iteration (only
current feedback controller), 2nd iteration, 3rd
iteration, and 10th iteration. By adding the learning
controllers, the tracking errors are diminished as the
iteration number increases. More quantitative
information can be obtained from Fig. 7 showing the
root mean square (RMS) values of the tracking errors,
respectively. In addition, in the Fig. 7 the solid line,
dash line and dot line denote the corresponding results
about the nominal plant model, the plant model for
F@#)=1 and the plant model for F(¢)=-1,

[=]

L
o
Y

Magnitude (dB)

]
[44]
[=]

-90 1 B} H
10 10

° 10' 10° 10
Frequency (rad/sec)

Fig. 5. The bode diagram of L(s).

6

1st iteration
5F STTTTTTTTR \
i Ay
, AY
’ AY
4 \
4 B N
1 A}
e ] Y
g 4 A}
- ’ AY
g 3 \
2 mm—— 2nd iteration Al
g I e,
o 2r ’
[ ’
= ! _—
II ............. 3rd lterallon .............
1k T i 3
L ~
" s’ . N Py -
Rt 10th iteration
0 =

-1

0 1 60 260 360 460 560 G(‘)O 760 800
t(sec)

Fig. 6. Tracking errors at Ist (dash), 2nd (dot),

3rd (dash-dot), and 10th (solid) iteration.
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RMS error

7 8 9 10

Iteration number

Fig. 7. Root mean square values of tracking errors
versus iteration number.

respectively. These simulations show that the resulting
ILC system with the current feedback controller (37)
and the learning controllers (36) and (38) is robustly
£, convergent and robustly stable.

5. CONCLUSIONS

It has been shown in this paper that the design of
the iterative learning control algorithm can be
generalized to the design of a v -suboptimal He

controller, by choosing an appropriate complex matrix
G, and reformulating the TLC synthesis problem in
the standard plant format. A sufficient convergence
condition for the proposed ILC process in the
presence of plant uncertainty is given in terms of
linear matrix inequalities. Based on the derived
condition, we showed that the iterative learning
control design problem can be reformulated as a
general robust control problem and thus can be solved
by the linear matrix inequality approach.

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki,
“Bettering operation of robots by learning,”
Journal Robotic Systems, vol. 1, no. 1, pp. 123-
140, 1984.

[2] R. W. Longman, “Iterative learning control and
repetitive control for engineering practice,”
International Journal of Control, vol. 73, no. 10,
pp. 930-954, 2000.

[3] K. S. Lee, S. H. Bang, and K. S. Chang,
“Feedback-assisted iterative learning control
based on an inverse process model,” Journal of
Process Control, vol. 4, no. 2, pp. 77-89, 1994,

[4] N. Amann, D. H. Owens, E. Rogers, and A.
Wahl, “An He approach to linear iterative
learning control design,” International Journal
of Adaptive Control and Signal Processing, vol.
10, no. 6, pp. 767-781, 1996.

[5] D. D. Roover, “Synthesis of a robust iterative
learning controller using an Hw approach,” Proc.
of the 35th Conf. on Decision and Control, pp.
3044-3049, 1996.

{61 J. H. Moon, T. Y. Doh, and M. J. Chung, “A
robust approach to iterative learning control
design for uncertain systems,” Automatica, vol.
34, no. 8, pp. 1001-1004, 1998.

[71 T. Y. Doh, J. H. Moon, K. B, Jin, and M. J.
Chung, “Robust ILC with current feedback for
uncertain linear systems,” International Journal
of Systems Science, vol. 30, no. 1, pp. 39-47,
1999,

(8] K. Zhou, J. C. Doyle, and K. Glover, Robust and
Optimal Control, Prentice Hall, Englewood
Cliffs, NJ, 1996.

[9] S. Boyd, L. E. Ghaoui, E. Feron, and V.
Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, Philadelphia, SIAM,
1994,

[10] L. Yu and J. Chu, “An LMI approach to
guaranteed cost control of linear uncertain time-
delay systems,” Automatica, vol. 35, no. 6, pp.
1155-1159, 1999.

[11] P. Gahinet and P. Apkarian, “A linear matrix
inequality = approach to He  control,”
International Journal of Robust and Nonlinear
Control, vol. 4, no. 4, pp. 421-448, 1994,

[12] A. Packard, K. Zhou, P. Pandey, and G. Becker,
“A collection of robust control problems leading
to LMI’s,” Proc. of the 30th Conf. on Decision
and Control, pp. 1245-1250, 1991.

[13] D. Gorinevsky, “Loop shaping for iterative
control of batch processes,” IEEE Control
Systems Magazine, vol. 22, no. 6, pp. 55-65,
2002.

Jianming Xu received the B.Eng.
degree from Nanchang University in
1998, and the M.S. degree from
Zhejiang University of Technology,
Hangzhou, China in 2003. He is
currently a Lecturer in the College of
Information Engineering, Zhejiang
University of Technology, China. His
research interests include iterative
learning control and robust control as well as their
applications.



LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems 179

Mingxuan Sun received the B.Eng.
degree from the Xi’an University of
Technology, China, in 1982, the
M.Sc.(Eng.) degree from the Beijing
Institute of Technology, China, in 1987,
and the Ph.D. degree from the
Nanyang Technological University,
Singapore, in 2002. From 1982 to
1984, he was with the Hefei General
Machinery Research Institute, China, where he became an
Assistant Engineer of the Institute in 1983. He joined the
Department of Electrical Engineering, Xi’an Institute of
Technology, China, in 1987, becoming an Associate
Professor in 1994 and the Deputy Director of the
Department in 1997. He held Research Fellow positions at
the Nanyang Technological University and the National
University of Singapore from 2001 to 2004. Since 2004, he
has been with the Zhejiang University of Technology, China,
and is currently a Professor of the College of Information
Engineering. His current research interests include iterative
learning control and repetitive control as well as their
applications.

Li Yu received the B.S. degree in
Control Theory from Nankai Univer-
sity in 1982, and the M.S. and Ph.D.
degrees from Zhejiang University,
Hangzhou, China. He is currently a
Professor in the College of Information
~ Engineering, Zhejiang University of
A Technology, China. His research
interests include robust control, time-

delay systems, decentralized control.




