• Title/Summary/Keyword: linear span

Search Result 272, Processing Time 0.028 seconds

Design of Long Span Overhead Transmission Line using Special High-tension Wire (특수 고장력전선을 사용한 장경간 가공송전선로 설계)

  • Na, Sang-Yong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.183-187
    • /
    • 2016
  • Recently, power demand has been increasing every year according to variation of electrical equipments and temperature rise in summer season. So, much more overhead line is being demanded to copy with increasing power demand and operate reliable power system. This paper analysis the characteristics of long span overhead transmission line using special high-tension wire in such as a safety factor, coefficient of elasticity, and the coefficient of linear expansion. Based on the analysis, we proposed the effectiveness of special high-tension wire having much more advantages with respect to height of steel tower and dip compared with conventional ACSR in long span overhead transmission line.

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

Design of Dynamic Free Span for a Subsea Pipeline: Application to the Gas Fields in the South of East Sea of Korea (해저 파이프라인의 동적 자유경간 설계: 동해 남부해역 가스전에의 응용)

  • 박한일;김창현;최경식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • Subsea pipelines have an important role in the overall tasks of offshore oil and gas production but arc exposed to various hazards with high potential risks of damage resulting in serious economic loss and impact on ocean environment. In this paper, the dynamic free span is analysed, which is one of main risk factors against the safety of subsea pipelines and the allowable length of dynamic free span which is important for the design of subsea pipelines is determined. The allowable free span length is examined by considering the relationship between vortex shedding frequency and natural frequency of pipeline free span, and the variation of the allowable length is analysed for different boundary conditions of pipe ends. The free span is regarded as a beam on elastic foundations and the boundary condition of the beam is generalized by modelling as restrained by linear and rotational spring at each end. A non-dimensionalized curve is obtained to facilitate the determination of exact allowable length of dynamic free span for subsea pipelines and is applied to the pipelines which is to be installed in the gas fields of the south of East Sea of Korea.

  • PDF

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

Nonlinear dynamic response analysis of a long-span suspension bridge under running train and turbulent wind

  • Wang, S.Q.;Xia, H.;Guo, W.W.;Zhang, N.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.309-320
    • /
    • 2010
  • With taking the geometric nonlinearity of bridge structure into account, a framework is presented for predicting the dynamic responses of a long-span suspension bridge subjected to running train and turbulent wind. The nonlinear dynamic equations of the coupled train-bridge-wind system are established, and solved with the Newmark numerical integration and direct interactive method. The corresponding linear and nonlinear processes for solving the system equation are described, and the corresponding computer codes are written. The proposed framework is then applied to a schemed long-span suspension bridge with the main span of 1120 m. The whole histories of the train passing through the bridge under turbulent wind are simulated, and the dynamic responses of the bridge are obtained. The results demonstrate that the geometric nonlinearity does not influence the variation tendency of the bridge displacement histories, but the maximum responses will be changed obviously; the lateral displacement of bridge are more sensitive to the wind than the vertical ones; compared with wind velocity, train speed affects the vertical maximum responses a little more clearly.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS

  • Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.301-312
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix pairs which satisfy additive properties with respect to spanning column rank of matrices over semirings.

SPANNING COLUMN RANK PRESERVERS OF INTEGER MATRICES

  • Kang, Kyung-Tae;Song, Seok-Zun
    • Honam Mathematical Journal
    • /
    • v.29 no.3
    • /
    • pp.427-443
    • /
    • 2007
  • The spanning column rank of an $m{\times}n$ integer matrix A is the minimum number of the columns of A that span its column space. We compare the spanning column rank with column rank of matrices over the ring of integers. We also characterize the linear operators that preserve the spanning column rank of integer matrices.

Theoretical analysis for determation of allowable free span of subsea pipeline (해저 배관의 허용 노출길이 산정에 대한 이론해석)

  • Jung Dong-Ho;Lee Yong-Doo;Park Han-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.54-62
    • /
    • 2003
  • The free span of a subsea pipeline due to seabed scouring can result in structural failure by severe ocean environmental loads and vortex induced vibrations. This Paper examines the safety of subsea pipelines with free spans under axial compressive load. The variation of allowable lengths of static and dynamic free spans is examined for generalized boundary conditions. The free span is modelled as a beam with an elastic foundations and the boundary condition is replaced by linear and rotational springs at each end. The static and dynamic free span curves are obtained with a function of non-dimensional parameters. A case study is carried out to introduce the application method of the curve. The results of this study can be usefully applied for the design of subsea pipelines with a free span.

  • PDF