• Title/Summary/Keyword: linear perturbation

Search Result 320, Processing Time 0.021 seconds

On the Study of Intraseasonal and Interannual Oscillations Simulation by using Coupled Model (접합모형을 이용한 경년 및 계절안 진동 모사실험 연구)

  • Ahn Joong-Bae
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.645-652
    • /
    • 1999
  • In order to simulate and investigate the major characteristics of El Nino/Southern Oscillation(ENSO) and Madden Jullian Oscillation(MJO), an intermediate type atmosphere-ocean coupled model is developed and their results are examined. The atmosphere model is a time-dependent non-linear perturbation moist model which can determine the internal heating for itself. The counterpart of the atmosphere model is GCM-type tropical ocean model which has fine horizontal and vertical grid resolutions. In the coupled experiment, warm SST anomaly and increased precipitation and eastward wind and current anomalies associated with ENSO and MJO are properly simulated in Pacific and Indian Oceans. In spite of some discrepancies in simulation MJO, the observed atmospheric and oceanic low-frequency characteristics in the tropics are successfully identified. Among them, positive SST anomalies centered at the 100m-depth of tropical eastern-central Pacific due to the eastward advection of warm water and reduced equatorial upwelling, and negative anomalies in the Indian and western Pacific seem to be the fundamental features of tropical low-frequency oscillations.

  • PDF

A Study on Buoyancy Effects in Double-Diffusive Convecting System(II) - Theoretical Study - (이중확산 대류계에서의 부력효과에 관한 연구(II) - 이론적 연구 -)

  • Hong, Nam-Ho;Kim, Min-Chan;Hyun, Myung-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.129-137
    • /
    • 1999
  • The time of the onset of double-diffusive convection in time-dependent, nonlinear concentration fields is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform temperature gradient experiences a sudden concentration change from below, but its stable thermal stratification affects concentration effects in such way to invoke convective motion. The related stability analysis, including Soret effect, is conducted on the basis of the propagation theory. Under the linear stability theory the concentration penetration depth is used as a length scaling factor, and the similarity transform for the linearized perturbation equations. The newlly obtained stability equations are solved numerically. The resulting critical time to mark the onset of regular cells are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal gradient promote double-diffusive convective motion.

  • PDF

An Experimental Study on the Dynamic Behavior of a Marine Riser (석유 시추보호관의 운동특성에 관한 실험적 고찰)

  • 김용철;이판묵;홍사영
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.46-58
    • /
    • 1988
  • The experimental investigations on the motion characteristics of a marine riser both in air and water were performed. The static deflections and natural frequencies of the riser in air including the effect of static offset, were obtained from the experiment. These results were compared with those of theoretical prediction by using a simple asymptotic formula. In order to investigate the nonlinear motion characteristics of the riser subject to nonlinear viscous drag and large displacement, the forced oscillation tests both in air and water were performed. In the forced oscillation tests in air, it was found that the transverse motion due to geometrical nonlinearity grows when the amplitude of in-line oscillation exceeds a certain critical value, say, order of 1-2 diameters. The planar motions of the riser in water due to vortex shedding and the geometrical nonlinearity were described. Some of these results were also compared with those of theoretical analysis, which uses a numerical perturbation technique based on the derived linear asymptotic solutions, and found to be generally in good agreement.

  • PDF

Disturbance Observer of Multi-Input Multi-Output Linear Systems (다중입출력 선형 시스템에서의 외란 관측기 설계)

  • Joo, Young-Jun;Back, Ju-Hoon;Shim, Hyung-Bo;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.51-52
    • /
    • 2007
  • 이 논문에서는 다중입출력 선형 시스템에 대한 외란 관측기설계 방법을 제안하고자 한다. 제안된 방법을 특이 섭동(Singular Perturbation) 이론을 사용하여 해석하며, 그 결과 Q 필터의 상수가 매우 작다면 외란 제거와 시스템 불확실성에 대한 보상을 통하여 실제 시스템을 공칭 시스템으로 근사화 시켜주는 것을 볼 수 있다.

  • PDF

Disturbance analysis of hydropower station vertical vibration dynamic characteristics: the effect of dual disturbances

  • Zhi, Baoping;Ma, Zhenyue
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.297-309
    • /
    • 2015
  • The purpose of this work is to analyze the effect of structure parameter disturbance on the dynamic characteristics of a hydropower station powerhouse. A vibration model with a head-cover system is established, and then the general disturbance problem analysis methods are discussed. Two new formulae based on two types of disturbances are developed from existing methods. The correctness and feasibility of these two formulae are validated by analyzing the hydropower station powerhouse vibration model. The appropriate calculation method for disturbance of the hydropower station powerhouse vibration dynamic characteristics is derived.

Accurate periodic solution for non-linear vibration of dynamical equations

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this paper we consider three different cases and we apply Variational Approach (VA) to solve the non-natural vibrations and oscillations. The method variational approach does not demand small perturbation and with only one iteration can lead to high accurate solution of the problem. Some patterns are presented for these three different cease to show the accuracy and effectiveness of the method. The results are compared with numerical solution using Runge-kutta's algorithm and another approximate method using energy balance method. It has been established that the variational approach can be an effective mathematical tool for solving conservative nonlinear dynamical equations.

Design of Sliding Mode Controller for Jet Engine (제트엔진의 슬라이딩모드 제어기 설계)

  • Han, Dongju;Kong, Changduck
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.18-26
    • /
    • 2013
  • The technique of sliding mode control has been introduced and designed for jet engine controller. For designing the controller for controlled element, the state space model of the turbojet engine is derived in advance from the perturbation of non-linear engine dynamic equation at operation point. Based upon the jet engine model, the robust sliding mode controller is proposed associated with the optimum sliding mode function. The numerical simulation demonstrates that the designed sliding mode controller proves its effectiveness for the jet engine by showing superior control performances over the conventional PI controller with fast responses and robustness to disturbance.

Torque Sensorless Decentralized Position/Force Control for Constrained Reconfigurable Manipulator via Non-fragile H Dynamic Output Feedback

  • Zhou, Fan;Dong, Bo;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.418-429
    • /
    • 2018
  • This paper studies the decentralized position/force control problem for constrained reconfigurable manipulator without torque sensing. A novel joint torque estimation scheme that exploits the existing structural elasticity of the manipulator joint with harmonic drive model is applied for each joint module. Based on the estimated joint torque and dynamic output feedback technique, a decentralized position/force control strategy is presented. In order to solve the problem of controller parameter perturbation, the non-fragile robust technique is introduced into the dynamic output feedback controller. Subsequently, the stability of the closed-loop system is proved using the Lyapunov theory and linear matrix inequality (LMI) technique. Finally, two 2-DOF constrained reconfigurable manipulators with different configurations are applied to verify the effectiveness of the proposed control scheme in numerical simulation.

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

A Study on Proportional and Derivative Control of Fluid Film Journal Bearings (유체 윤활 베어링의 비례 및 미분 제어에 관한 연구)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.212-217
    • /
    • 2001
  • This paper presents the stability characteristics of a rotor-bearing system supported by actively controlled hydrodynamic journal bearing. The proportional and derivative controls including coupled motion are adopted for the control algorithm to control the hydrodynamic journal bearing with a circumferentially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability characteristics are investigated with the Routh-Hurwitz criteria using the linear dynamic coefficients which are obtained from the perturbation method. The stability characteristics of the rotor-bearing system supported by active controlled hydrodynamic journal bearing are investigated for various control gain. It is found that the speed at onset of instability is increased for both proportional and derivative control of the bearing, and the proportional and derivative control of coupled motion is more effective than proportional and derivative control of uncoupled motion.

  • PDF