• Title/Summary/Keyword: linear motor

Search Result 1,767, Processing Time 0.03 seconds

Realization of Velocity of BLDC Motor Using Linear Type Hall-effect Sensor and Enhanced Differentiator (선형홀센서와 고성능 미분기를 이용한 BLDC모터의 속도신호 구현)

  • Gu, Jeong-Hoi;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.840-845
    • /
    • 2018
  • BLDC motor is widely used as a servo motor due to high efficiency, high power density, low inertia, and low maintenance. However, BLDC motor generally needs position and velocity sensors to control actuation system. Usually, analog tachometers and encoders have been used for velocity feedback sensors. However, using these types of sensors have problems such as the cost, space, and malfunction. So, This paper is to propose a new velocity measurement method using linear hall-effect and enhanced differentiator for BLDC motor. In order to verify the feasibility of the proposed method, several simulations and experiments are performed. It is shown that the proposed velocity measurement method can satisfy the requirements without using of velocity sensor.

Design and FEM Analysis of Ultrasonic Linear Motor (초음파리니어 모터의 설계 및 해석)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.728-731
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. A linear ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory ANSYS was used to analyze the resonance frequency and the displacement of the stator vibrator. The resonance frequency of the motor provides the elliptical motion. and ANSYS was used to analyze elliptical motion and elliptical trajectory of stator vibrator when thickness of piezoelectric ceramics was varied respectively 0.763, 1.526, 2.289[mm] and width of stator vibrator was varied respectively 16, 12, 8, 4[mm]. When thickness of piezoelectric ceramics was decreased, the displacement of the stator vibrator was increased. And when width of stator vibrator was decreased, the displacement of the stator vibrator was increased.

  • PDF

Design and Fabrication of Linear-Type Ultrasonic Motor using Ll-B4 Vibration Mode (Ll-B4 진동모드를 이용한 linear-Type Ultrasonic Motor의 설계 및 시작)

  • 이종섭;임기조;정수현;정중기;임태빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.29-32
    • /
    • 1998
  • A plate-type ultrasonic linear motor using longitudinal and bending multi-vibration mode was designed and fabricated for card-forwarding device. The rotor consisted of piezoelectric ceramic plate and elastic materials. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6 m/s at 80 V in applied voltage. Starting torque was 1.4 mNm and maximum efficiency was 1.2 %.

  • PDF

Mover Field Oriented Control of Linear Permanent-Magnet Vernier Motor Considering Loss Minimization

  • Qiu, Xianqun;Zhao, Wenxiang;Chen, Qian;Xu, Dezhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1114-1123
    • /
    • 2017
  • A linear permanent-magnet vernier (LPMV) motor has magnets and windings in the short mover, which is very suitable for long stroke applications. This paper proposed a new field oriented control with space vector pulse width modulation for the LPMV motor, which considers loss minimization. First, the topology of the LPMV motor is briefly presented. Then, the mathematical model is derived, and the mover field oriented control strategy is proposed. Also, the loss analysis is performed. Finally, the simulated and experimental results are given, verifying the feasibility and effectiveness of the proposed control strategy.

Finite Element Simulation of Multilayer Ultrasonic Linear Motor (적층 선형 초음파 모터의 유한요소 시뮬레이션)

  • Lee, Sang-Ho;Lee, Gab-Soo;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.284-285
    • /
    • 2006
  • In this study, multilayer structured ultrasonic linear motor was designed and simulated using ANSYS of finite element method simulator for investigating the optimum conditions of it. The ultrasonic linear motor studied in this paper designed using the 1st longitudinal($L_1$) and 4th bending vibration($B_4$). The driving voltage of the motor was very low as $V_1=5\sqrt{2}sinwt$ and $V_2=5\sqrt{2}coswt$. With the increase of the number of piezoelectric ceramic layers, displacement of node was increased. Maximum z displacement of node was about $12{\mu}m$ at the 18 layered ultrasonic motor.

  • PDF

An Experimental Study on the Vibrating Characteristics in Conveyor using the Linear Motor (수평가진식 진동 컨베이어의 진동특성에 관한 실험적 연구)

  • 윤영식;박철우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.820-823
    • /
    • 2003
  • Recently, the linear motors have been widely used in the industry, owing to various advantages in comparison with conventional feed mechanism; high speed, high acceleration and high stiffness. In addition, the linear motors have the merits of a good velocity control, reversible movement and long lifetime. For the application of the linear motors to vibrating conveyor, the study of vibrating characteristics is required. In this paper, we developed the linear vibrating conveyor using the linear motor that has the 410N thrust and the 7.2m/min maximum moving velocity. To accomplish this system, we had some experiments that included the influence of deceleration time, vibrating amplitude and additional weight.

  • PDF

A Study on Improvement of the Thermal Stability for Development of Linear Motors with High Speed and Accuracy (고속.정밀 이송용 리니어모터 개발을 위한 열적 안정성 향상에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man;Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.126-133
    • /
    • 2008
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speed and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. This paper presents an investigation into the thermal behavior of linear motors with the objective of deriving the optimum cooling conditions. To reach these goals several experiments were carried out, varying operating and cooling conditions. From the experimental results, this research proposed cooling conditions to improve the thermal characteristics of the linear motors.

Implementation of Linear Motor Piston Amplitude Estimator Using Phase Lag Filter (위상지연필터를 이용한 리니어 모터 피스톤 진폭 추정기의 구현)

  • Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.212-218
    • /
    • 2013
  • In this paper, a linear motor piston amplitude estimator using phase lag filter has been implemented. In order to control the cooling capability of a refrigerator or an air conditioner in which liner compressors are applied, the piston speed should be controlled. The piston speed control can be obtained by adjusting the frequency or the stroke of linear motors. The dynamic performance of linear compressors depends on how accurately the stroke or the piston amplitude is estimated. A linear motor piston amplitude estimator using phase lag filter is proposed and the superior performance of our estimator is verified via some simulation studies.

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.