• 제목/요약/키워드: linear discriminant analysis(LDA)

검색결과 170건 처리시간 0.026초

경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구 (Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire)

  • 송인;이건목;홍권의
    • Journal of Acupuncture Research
    • /
    • 제28권3호
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.

PCA-LDA 알고리즘을 이용한 고체절연물의 열화도 판별 (Evaluation on Degradation of Solid Insulator by PCA-LDA algorithm)

  • 박성희;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2079-2081
    • /
    • 2005
  • Electrical treeing occurrence is caused by some defect in solid insulator. Those are accompany the PD(partial discharge) occurrence. And lifetime of the insulator is affected by PD. So, detection of electrical treeing is important thing as this view. Especially, detection of the end treeing is more important and have meaning for industrial engineering because concerned with maintenance and replacement of equipment. In this paper, evaluation of treeing process were studied and PCA(principle component analysis)-LDA(linear discriminant analysis) as classification method were used. The result is present the good recognition.

  • PDF

DCT/LDA 기반 얼굴 인식에 관한 연구 (A Study on Face Recognition using DCT/LDA)

  • 김형준;정병희;김회율
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.55-62
    • /
    • 2005
  • 본 논문에서는 입력된 얼굴 영상으로부터 구한 DCT 계수에 대해 LDA를 적용하는 DCT/LDA를 이용한 얼굴 인식 방법을 제안한다. 제안된 방법은 적은 수의 DCT 계수를 이용하여 입력 영상을 저차원으로 표현함으로써 특징 공간의 차수보다 트레이닝 데이터의 수가 적은 경우 발생하는 LDA의 SSS 문제를 해결한다. DCT는 기저 벡터가 일정하며 PCA와 유사한 에너지 압축 효율을 가지기 때문에 제안된 방법은 기존의 PCA/LDA 방법보다 학습 속도는 빠르면서 실제 얼굴인식 시스템에 적용이 가능한 정도의 얼굴 인식율을 기대할 수 있다. 실험을 통해 제안된 방법이 PCA/LDA 방법과 유사한 얼굴 인식 성능을 보이면서 약 13,000배 빠르게 학습되는 것을 확인하였고, 기존의 Block-DCT/LDA 방법과 유사하거나 향상된 인식 결과를 확인하였다.

역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석 (Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA)

  • 문해민;박진원;반성범
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.24-29
    • /
    • 2016
  • 높은 수준의 지능형 영상 감시 시스템을 만족하기 위해서는 단순히 객체를 검출해서 분류하는 것뿐만 아니라 대상에 대한 정확한 신원 정보까지 확인할 수 있어야 한다. 사람을 구별하는 대표적인 얼굴 인식은 얼굴 자체의 가변성뿐만 아니라 조명, 배경, 카메라의 각도와 같은 외적요인에 따라 인식률의 변화가 발생한다. 본 논문에서는 다양한 실험을 통해 거리 변화에 의한 얼굴 영상의 크기 변화에 강인한 얼굴 인식 방법을 분석한다. 얼굴 인식 실험은 1m~5m에서 추출한 실제 거리별 얼굴 영상으로 이루어졌다. 실험결과, 1인당 학습 영상의 수가 많을 경우는 얼굴 특징 추출 방법으로 LDA를 사용한 방법이 전체 평균 75.4%로 가장 우수한 성능을 나타냈다. 하지만 1인당 학습 영상의 수가 5장 이하가 될 때는 CNN을 사용한 방법이 69.8%로 가장 우수한 성능을 나타냈다. 또한, 저해상도 얼굴 인식의 경우 얼굴 영상의 크기가 $15{\times}15$보다 작아지면 인식률이 급격히 감소함을 확인했다.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • 제2권1호
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

다중 클래스 SVMs를 이용한 얼굴 인식의 성능 개선 (The Performance Improvement of Face Recognition Using Multi-Class SVMs)

  • 박성욱;박종욱
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.43-49
    • /
    • 2004
  • 기존의 다중 클래스 SVMs은 클래스의 개수가 증가되면, 이진 클래스 SVMs의 수도 증가되어 분류를 위해 많은 시간이 요구된다. 본 논문에서는 분류 시간을 줄이기 위하여, PCA+LDA 특징 부 공간에서 NNR을 적용하여 클래스의 개수를 줄이는 방법을 제안한다. 제안된 방법은 PCA+LDA 특징 부 공간에서 간단한 NNR을 사용하여, 입력된 테스트 특징 데이터와 근접된 얼굴 클래스들을 추출함으로서 얼굴 클래스의 개수를 줄이는 방법이다. 클래스 개수를 줄임으로, 본 방법은 기존의 다중 클래스 SVMs에 비하여 훈련 횟수와 비교 횟수를 줄일 수 있고, 결과적으로 하나의 테스트 영상을 위한 분류 시간을 크게 줄일 수 있다. 또한 실험 결과, 제안된 방법은 NNC 기법보다 낮은 에러 율을 가지며, 기존의 다중 클래스 SVMs보다 동일한 에러 율을 갖지만, 보다 빠른 분류시간을 가짐을 확인할 수 있었다.

얼굴 인식을 위한 2D DLDA 알고리즘 (2D Direct LDA Algorithm for Face Recognition)

  • 조동욱;장언동;김영길;송영준;안재형;김봉현
    • 한국통신학회논문지
    • /
    • 제30권12C호
    • /
    • pp.1162-1166
    • /
    • 2005
  • 본 논문에서는 얼굴 인식을 위한 새로운 저차원 특징 표현 기법을 제안하였다. 선형판별기법(LDA)는 인기있는 특징추출 기법이다. 하지만 고차원 데이터의 경우에 계산적인 복잡도가 높고 샘플의 개수가 적은 경우 역행렬을 구할 수 없는 특이행렬문제에 직면한다. 이러한 문제들을 해결하기 위해 일반적인 선형판별기법과 다르게 우리는 이차원 이미지 공분산 행렬을 구한 다음 직접선형판별기법(dirct LDA)을 적용하였으며 이것을 2D-DLDA라고 부른다. ORL 얼굴데이터베이스를 사용하여 실험한 결과 기존의 직접선형판별기법보다 성능이 우수함을 확인하였다.

한국 프로바둑기사 포석 인식을 위한 선형판별분석과 주성분분석 비교 (Comparison of LDA and PCA for Korean Pro Go Player's Opening Recognition)

  • 이병두
    • 한국게임학회 논문지
    • /
    • 제13권4호
    • /
    • pp.15-24
    • /
    • 2013
  • 적어도 2,500년 전에 기원된 바둑은 세상에서 가장 오래된 보드 게임 중의 하나이다. 아직까지 포석 바둑에 대한 이론적 연구는 여전히 미흡하다. 본 연구는 특정 프로기사의 포석을 갖고 훈련용 포석으로부터 얻어낸 클래스로의 인식을 위해 전통적인 선형판별분석 알고리즘을 적용하였다. 상위 10위권 한국 프로기사의 포석을 갖고 클래스-독립 선형판별분석과 클래스-종속 선형판별분석을 수행하였다. 실험 결과 클래스-독립 LDA는 평균 14%의 인식률을, 클래스-종속 LDA는 평균 12%의 인식률을 각각 보였다. 또한 연구 결과 일반적인 상식과 달리 PCA가 LDA보다 더 우월하고, 유클리디언 거리 측정 방식이 결코 LDA보다 뒤지지 않는다는 새로운 사실이 밝혀졌다.

A Bayesian Diagnostic for Influential Observations in LDA

  • Lim, Jae-Hak;Lee, Chong-Hyung;Cho, Byung-Yup
    • 품질경영학회지
    • /
    • 제28권1호
    • /
    • pp.119-131
    • /
    • 2000
  • This paper suggests a new diagnostic measure for detecting influential observations in linear discriminant analysis (LDA). It is developed from a Bayesian point of view using a default Bayes factor obtained from the imaginary training sample methodology. The Bayes factor is taken as a criterion for testing homogeneity of covariance matrices in LDA model. It is noted that the effect of an observation over the criterion is fully explained by the diagnostic measure. We suggest a graphical method that can be taken as a tool for interpreting the diagnostic measure and detecting influential observations. Performance of the measure is examined through an illustrative example.

  • PDF

걸음걸이 인식을 통한 감시용 로봇에서의 개인 확인 (Gait Recognition and Person Identification for Surveillance Robots)

  • 박진일;이욱재;조재훈;송창규;전명근
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.511-518
    • /
    • 2009
  • The surveillance robot has been an important component in the field of service robot industry. In the surveillance robot technology, one of the most important technology is to identify a person. In this paper, we propose a gait recognition method based on contourlet and fuzzy LDA (Linear Discriminant Analysis) for surveillance robots. After decomposing a gait image into directional subband images by contourlet, features are obtained in each subband by the fuzzy LDA. The final gait recognition is performed by a fusion technique that effectively combines similarities calculated respectively in each local subband. To show the effectiveness of the proposed algorithm, various experiments are performed for CBNU and NLPR DB datasets. From these, we obtained better classification rates in comparison with the result produced by previous methods.