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ABSTRACT

A new low dimensional feature representation technique is presented in this paper. Linear discriminant analysis
is a popular feature extraction method. However, in the case of high dimensional data, the computational difficulty
and the small sample size problem are often encountered. In order to solve these problems, we propose two
dimensional direct LDA algorithm, which directly extracts the image scatter matrix from 2D image and uses Direct
LDA algorithm for face recognition. The ORL face database is used to evaluate the performance of the proposed
method. The experimental results indicate that the performance of the proposed method is superior to DLDA.

I. Introduction that are efficient for discrimination between
classes. Turk and Pentland presented the Eigenfaces

Over the past 20 years, face recognition (FR)
has been an active research. Various methods
have been proposed for FR™. Especially, the ap-
pearance-based methods have been successfully
employed. Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) are well
known methods among them. PCA seeks direc-
tions that have the largest variance associated
with it. On the other hand, LLDA seeks directions

method for face recognition™. Since then, PCA
based methods have been developed. Recently,
Yang used Kernel PCA for FRP. Although the
Kernel PCA provides better performance, it req-
uries mor computational complexity than PCA’s.
Yang et al. proposed 2DPCA™. While previous
methods use 1D image vector, 2DPCA makes di-
rectly the scatter matrix from 2D image matrices.
2DPCA deals with the small size scatter matrix
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than traditional PCA-based methods and evaluates
the scatter matrix accurately. For example, an im-
age vector of 112x92 forms 10304 dimensional
vector and the size of the scatter matrix is
10304x10304. On the other hand, the covariance
of 2DPCA forms only 92x92 matrix. To avoid
computational problem to get the eigenvectors, tra-
ditional PCA-based methods use SVD techniques.
However, the eigenvectors which are acquired in
this way may not be evaluated accurately since
the eigenvectors are statistically determined by the
scatter matrix. Also, 2DPCA is more suitable for
small sample size problems because its scatter
matrix is small. The demerit of 2DPDA is that it
requires more coefficients for image representation
than PCA. It needs more storage and more time
for recognition.

Belhumeur et al. proposed Fisherfaces method
based on LDAP. In general, it is believed that
LDA-based pattern classification methods outper-
form PCA-based ones. However, Traditional LDA
has small sample size (SSS) problem. Also, it is
difficult to directly apply to high dimensional ma-
trix because of computational complexity. To
solve the problem, Belhumer et al proposed di-
mensionality reduction using PCA before LDA. A
potential problem is that PCA step may discard
dimensions that contain important discriminative
information. Chen et al. have proved that the null
space of within-class scatter matrix contains the
most discriminative information’®. In reality, PCA
discards the null space of the within-class scatter
matrix. To prevent the null space from discarding,
Yu et al. proposed Direct LDA (DLDA) meth-
0d”. DLDA directly processes data in the original
high dimensional vectors. By simultaneous diago-
nalization, DLDA is able to discard the null
space of between-class scatter matrix and to keep
the null space of within-class scatter matrix,
which contains very important discriminative
information. But DLDA still uses SVD technique
to obtain eigenvectors of scatter matrix. This does
not imply that the eigenvectors can be evaluated
accurately.

In this paper, we introduce a new low dimen-

sional feature representation method, called two
dimensional direct linear discriminant analysis
(2D-DLDA). The method combines the merits of
the image scatter matrix like 2DPCA and DLDA
approaches. The image scatter matrix reduces the
chance of singularity caused by SSS problem.
Furthermore, our method does not use SVD tech-
nique to get eigenvectors of the image scatter
matrix. It can evaluate the image scatter matrix
accurately. And then DLDA method is used for
obtaining the feature matrix. It maximizes Fisher’s
criterion.

The remainder of this paper is organized as
follows. In Section 2, the proposed 2D-DLDA al-
gorithm is described. Experimental results and
comparisons with DLDA are presented in Section
3. Finally, conclusions are offered in Section.

II. 2D Direct LDA

Let X denotes a m by n image, and W is an
n dimensional column vector. X is projected on-

to Wby the following linear transformation

Y=XW 0

Thus, we get an m dimensional projected vec-
tor ¥, called the feature vector of the image X.
Suppose there are C known pattern classes in the
training set, and Jf denotes the size of the train-
ing set. The jth training image is denoted by a m
by n matrix Xx; (=1, 2, .., M), and the mean
image of all training sample is denoted by X
and X (i=1, 2, .., C) denoted the mean image
of class 7T; and N, is the number of samples
in class T, the projected class is P After the

projection of training image onto W, we get the

projected feature vector
szvaV: (i=1: 2’ eeey M) (2)

LDA attempts to seek a set of optimal discrim-
ination vectors to form a transform W by max-
imizing the Fisher criterion denoted as
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where tr( ) denotes the trace of matrix, T, de-
notes the between class scatter matrix of projected
feature vectors of training images, and T, de-

notes the within class scatter matrix of projected
feature vectors of training images. So,

_—Y—i)(Yk_Ti) T

- Xg[(x XM = X)W 76)

= e T

So,
M) = MEN(X - D (X~ )W ©

— C J— P
tr(S.) = W;l X,ZT,-(X”_ X)X xpyw (@)

Let us define the following matrix
€  — =

S PHREIE SRR PR

The matrix (G, is called the image between
class scatter matrix and G, is called the image

within class scatter matrix.
Alternatively, the criterion can be expressed by

wiG W

JW =", W 10)

Now, we try to find a matrix that simul- ta-
neously diagonalizes both G, and G .
AGAT=1, AGLAT=4 an

Where A is a diagonal matrix with diagonal
elements sorted in decreasing order. First, we find

eigenvectors Y/ that diagonalizes G ,.
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VG, v=A (12)

Where VTV=1 A is a diagonal matrix sort-
ed in decreasing order, i.c. each column of V is
an eigenvector of (3, and A contains all the

eigenvalues.

Let v be the first m columns of ¥ (m by n
matrix, n being the column numbers of image). In
general, G, is not singular in contrast with con-

ventional DLDA. So m is equal to n. Now
Y’G,Y=D, 13

Where D, is the m by m principal sub-matrix

of A. Further let zZ= YD ;"? to unitize G, '

(YD3') TG (YD) =1,27G Zz=1 (14

Next, we find eigenvectors {/ to diagonalize

zZ7G 2.
v'zt¢ zUu=D, 15)

Where UTU=1
diagonal.

D, may contain zefos in its

To maximize J(W), we can sort the diagonal
elements of p, and discard some high ei-

genvalues with the corresponding eigenvectors.
Let the optimal projection matrix, W

w=(D ;Y*yzH 7T (16)

The low dimensional transformed X* is
X'=(X- W
The Frobenius norm is used for classification.

The distance between X3 and X7 is defined by

DEXL.XD=|X1—-X3] an

Il. Experimental Results & Observation

The proposed method is tested on the ORL
face image database. The ORL database consists
of 40 distinct persons. There are 10 images per
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person. The images are taken at different times
and contain various facial expressions (open/closed
eyes, smiling/not smiling) and facial details
(glasses or no glasses). The size of image is 92
by 112 pixels with 256 gray levels. For the FR
experiments, first five images are chosen for
training from each person and the other five im-
ages are used for testing. Thus the total number
of training images and testing images are both
200.

In the proposed mehtod, the size of image
scatter matrix G, and G, are both 92 by 92.

In the 112 by 92 image matrix, the best result is
93.5%. when the images is down-sampled to 28
by 23 matrix to reduce the computational com-
plexity, the size of image scatter matrix is 23 by
23 and the best result is 94.5%.

To evaluate performance of 2D_DLDA, it is
compared with DLDA. Table 1 presents a com-
parison of performance of the two algorithms for
different image matrix sizes. The experimental re-
sults show that 2D-DLDA is more efficient than
DLDA in terms of recognition rate.

In 2D-DLDA, Image scatter matrix is smaller
than scatter matrix of DLDA so that we can
avoid computational complexity of feature
extraction. But 2D image based methods have a
weak point. The extracted feature matrix of
2D-DLDA is larger than DLDA. For instance, the
extracted feature matrix forms 112 by 87 to get
the best performance when the size of image ma-
trix is 112 by 92.

Therefore it needs the dimensional reduction of
image. Table 1 shows that the dimensional reduc-
tion has little influence on the performance.

Table 1. The Comparison of recognition rate

Image matrix size DLDA 2D-DLDA
112 x 92 87.5% 93.5%
56 x 46 86.0% 93.0%
39 x 30 86.5% 92.5%
28 x 23 85.5% 94.5%

IV. Conclusion

In this paper, 2D-DLDA algorithm is proposed.
The method combines the merits of the image
scatter matrix and DLDA approaches. Since the
size of the image scatter matrix is smaller than
the conventional method, SSS problem can be
avoided and eigenvectors can be efficiently
computed. Furthermore it achieves the better per-
formance by using DLDA algorithm since DLDA
preserves the null space of within class scatter
matrix, which contains very important discrim-
inative information and the experimental results
show that the dimensional reduction has little in-
fluence on the recognition rate. In future, we in-
tend to develop dimensional reduction method.
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