• Title/Summary/Keyword: linear combinations

Search Result 214, Processing Time 0.027 seconds

GLR Charts for Simultaneously Monitoring a Sustained Shift and a Linear Drift in the Process Mean

  • Choi, Mi Lim;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2014
  • This paper considers the problem of monitoring the mean of a normally distributed process variable when the objective is to effectively detect both a sustained shift and a linear drift. The design and application of a generalized likelihood ratio (GLR) chart for simultaneously monitoring a sustained shift and a linear drift are evaluated. The GLR chart has the advantage that when we design this chart, we do not need to specify the size of the parameter change. The performance of the GLR chart is compared with that of other control charts, such as the standard cumulative sum (CUSUM) charts and the cumulative score (CUSCORE) charts. And we compare the proposed GLR chart with the GLR charts designed for monitoring only a sustained shift and for monitoring only a linear drift. Finally, we also compare the proposed GLR chart with the chart combinations. We show that the proposed GLR chart has better overall performance for a wide range of shift sizes and drift rates relative to other control charts, when a special cause produces a sustained shift and/or a linear drift in the process mean.

A Study on the Room Temperature Control Methods Considering Human Thermal Comfort Under Hot and Humid Condition (인체의 온열환경 적응을 고려한 여름철의 실온 쾌적변동 제어에 관한 연구)

  • Lee, Ju-Youn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.334-341
    • /
    • 2008
  • The purpose of this study is to investigate the effects of changing air temperature and the changing on/off periods of the air-conditioner system. Adding to that, this paper discuss is to consider the effects of air temperature with the air-conditioner system upon the human thermal comfort. The experiment is conducted during the summer. The subjects(6 young females) are exposed to the following conditions: combinations of 2 Swing and 2 Linear air control Conditions. (2 Swing during 40 min, 4 Swing during 40 min, Linear 40 min, Linear 60 min in still air and RH 50%). From the experiment, the following results are obtained; the thermal sensation vote is neutral after 90 minute. The mean skin temperature ranged about $34^{\circ}C$ at all conditions. The skin temperature was greatly affected by 2 Swing big amplitude condition.

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

A NOTE ON LINEAR COMBINATIONS OF AN IDEMPOTENT MATRIX AND A TRIPOTENT MATRIX

  • Yao, Hongmei;Sun, Yanling;Xu, Chuang;Bu, Changjiang
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1493-1499
    • /
    • 2009
  • Let $A_1$ and $A_2$ be nonzero complex idempotent and tripotent matrix, respectively. Denote a linear combination of the two matrices by A = $c_1A_1$ + $c_2A_2$, where $c_1,\;c_2$ are nonzero complex scalars. In this paper, under an assumption of $A_1A_2$ = $A_2A_1$, we characterize all situations in which the linear combination is tripotent. A statistical interpretation of this tripotent problem is also pointed out. Moreover, In [2], Baksalary characterized all situations in which the above linear combination is idem-potent by using the property of decomposition of a tripotent matrix, i.e. if $A_2$ is tripotent, then $A_2$ = $B_1-B_2$, where $B^2_i=B_i$, i = 1, 2 and $B_1B_2=B_2B_1=0$. While in this paper, by utilizing a method different from the one used by Baksalary in [2], we prove the theorem 1 in [2] again.

  • PDF

An improved plasma model by optimizing neuron activation gradient (뉴런 활성화 경사 최적화를 이용한 개선된 플라즈마 모델)

  • 김병환;박성진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.20-20
    • /
    • 2000
  • Back-propagation neural network (BPNN) is the most prevalently used paradigm in modeling semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function as a neuron activation function is investigated. The linear function was operated in combination with other sigmoid functions. Comparison revealed that a particular combination, the bipolar sigmoid function in hidden layer and the linear function in output layer, is found to be the best combination that yields the highest prediction accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and out of them one optimal set was determined. Predictive performance of the corresponding model were compared to non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an improvement of more than 30%. This demonstrates that the proposed gradient-optimized teaming for BPNN with a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate models, another eight experiments were conducted. process variables that were varied in the design include source polver, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe are electron density, electron temperature, and plasma potential.

  • PDF

Optimal Friction Materials of Tiny Piezoelectric Ultrasonic Linear Motor

  • Lee, Kyong-Jae;Nahm, Sahn;Kang, Jin-Kyu;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In recent years, a novel tiny piezoelectric linear motor converting a radial mode vibration to a longitudinal mode vibration driven by the impact force has been developed for a camera optical module. The tiny piezoelectric motor is consisted of a shaft, mobile element, and piezoelectric transducer. In this work, the frictional coefficient and static friction force of the interface between the shaft and the mobile element have been investigated according to their respective materials. It was found that two combinations, namely Pyrex glass or stainless steel for the shaft and stainless steel (SUS) for the mobile element, exhibited good dynamic behaviors in the tiny ultrasonic linear motor, which was newly developed based on operating concepts based on Newton's law.

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Comparison of Numerical Analysis Methods of APro for the Total System Performance Assessment of a Geological Disposal System

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 2023
  • Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRES-SSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.

Generalization of Staggered Nested Designs for Precision Experiments

  • OJIMA Yoshikazu
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.253-258
    • /
    • 1998
  • Staggered nested designs are the most popular class of unbalanced nested designs in practical fields. The most important features of the staggered nested design are that it has a very simple open-ended structure and each sum of squares in the analysis of variance has almost the same degrees of freedom. Based on the features, a class of unbalanced nested designs which is generalized of the staggered nested design is proposed. Some of the generalized staggered nested designs are shown to be more efficient than the staggered nested design in estimating some of variance components and their linear combinations.

  • PDF

AN APPLICATION OF FRACTIONAL DERIVATIVE OPERATOR TO A NEW CLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Joshi, S.B.
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.183-194
    • /
    • 1998
  • Making use of a certain operator of fractional derivative, a new subclass $L_p({\alpha},{\beta},{\gamma},{\lambda})$) of analytic and p-valent functions is introduced in the present paper. Apart from various coefficient bounds, many interesting and useful properties of this class of functions are given, some of these properties involve, for example, linear combinations and modified Hadamard product of several functions belonging to the class introduced here.

  • PDF