Abstract
Let $A_1$ and $A_2$ be nonzero complex idempotent and tripotent matrix, respectively. Denote a linear combination of the two matrices by A = $c_1A_1$ + $c_2A_2$, where $c_1,\;c_2$ are nonzero complex scalars. In this paper, under an assumption of $A_1A_2$ = $A_2A_1$, we characterize all situations in which the linear combination is tripotent. A statistical interpretation of this tripotent problem is also pointed out. Moreover, In [2], Baksalary characterized all situations in which the above linear combination is idem-potent by using the property of decomposition of a tripotent matrix, i.e. if $A_2$ is tripotent, then $A_2$ = $B_1-B_2$, where $B^2_i=B_i$, i = 1, 2 and $B_1B_2=B_2B_1=0$. While in this paper, by utilizing a method different from the one used by Baksalary in [2], we prove the theorem 1 in [2] again.