• Title/Summary/Keyword: linear approximation

Search Result 748, Processing Time 0.024 seconds

Transfer function approximation of motion-induced aerodynamic forces with rational functions

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.133-151
    • /
    • 2011
  • For a detailed investigation of the dynamic behaviour of slender bridges under wind action especially the motion-induced fluid forces should be available not only for harmonic motions but also for more general ones. If linear transfer behaviour is assumed, the force-displacement relation for almost arbitrary motions can be handled in the frequency domain using aerodynamic transfer functions. In aerospace engineering as well as in bridge engineering, these functions are usually approximated by special kinds of complex-valued rational functions which depend on complex frequencies. The quality of this approximation is evaluated for several bridge cross sections in this article. It is shown that rational functions are for some sections scarcely suitable to realistically represent the transfer behaviour of motion-induced aerodynamic forces for arbitrarily complex frequencies.

Approximation method of nonlinear control system by linearization (비선형제어계의 선형화에 의한 근사해의 연구)

  • 양흥석;김경기
    • 전기의세계
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1973
  • This paper treats with the sub-optimal control problem of noninear systems by approximation method. This method involves the approximation by linearization which provides the sub-optimal solution of non-linear control problems. The result of this work shows that, in the problem in which the controlled plant is characterized by an ordinary differential equation of first order, the solution obtained by this method coincides with the exact solution of problem. In of case of the second or higher order systems, it is proved analytically that this method of linearization produces the sub-optimal solution of the given problem. It is also shown that the sub-optimality of solution by the method can be evaluated by introducing the upper and lower bounded performance indices. Discussion is made on the procedure with some illustrative examples whose performance indices are given in the quadratic forms.

  • PDF

Full-Range Analytic Drain Current Model for Depletion-Mode Long-Channel Surrounding-Gate Nanowire Field-Effect Transistor

  • Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.361-366
    • /
    • 2013
  • A full-range analytic drain current model for depletion-mode long-channel surrounding-gate nanowire field-effect transistor (SGNWFET) is proposed. The model is derived from the solution of the 1-D cylindrical Poisson equation which includes dopant and mobile charges, by using the Pao-Sah gradual channel approximation and the full-depletion approximation. The proposed model captures the phenomenon of the bulk conduction mechanism in all regions of device operation (subthreshold, linear, and saturation regions). It has been shown that the continuous model is in complete agreement with the numerical simulations.

Statically compensated modal approximation of a class of distributed parameters systems

  • Imai, Jun;Wada, Kiyoshi;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.416-419
    • /
    • 1995
  • A finite-dimensional approximation technique is developed for a class of spectral systems with input and output operators which are unbounded. A corresponding bounding technique on the frequency-response error is also established for control system design. Our goal is to construct an uncertainty model including a nominal plant and its error bounds so that the results from robust linear control theory can be applied to guarantee a closed loop control performance. We demonstrate by numerical example that these techniques are applicable, with a modest computational burden, to a wide class of distributed parameter system plants.

  • PDF

RC Tree Delay Estimation (RC tree의 지연시간 예측)

  • 유승주;최기영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.209-219
    • /
    • 1995
  • As a new algorithm for RC tree delay estimation, we propose a $\tau$-model of the driver and a moment propagation method. The $\tau$-model represents the driver as a Thevenin equivalent circuit which has a one-time-constant voltage source and a linear resistor. The new driver model estimates the input voltage waveform applied to the RC more accurately than the k-factor model or the 2-piece waveform model. Compared with Elmore method, which is a lst-order approximation, the moment propagation method, which uses $\pi$-model loads to calculate the moments of the voltage waveform on each node of RC trees, gives more accurate results by performing higher-order approximations with the same simple tree walking algorithm. In addition, for the instability problem which is common to all the approximation methods using the moment matching technique, we propose a heuristic method which guarantees a stable and accureate 2nd order approximation. The proposed driver model and the moment propagation method give an accureacy close to SPICE results and more than 1000 times speedup over circuit level simulations for RC trees and FPGA interconnects in which the interconnect delay is dominant.

  • PDF

Optimal Design of Helicopter Tailer Boom (헬리곱터 꼬리 날개의 최적 설계)

  • 한석영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.419-424
    • /
    • 1999
  • In this paper, the comparison of the first order approximation schemes such as SLP (sequential linear programming), CONLIN(convex linearization), MMA(method of moving asymptotes) and the second order approximation scheme, SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore, when it is considered with the expense of computation, MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem, it was applied to the helicopter tail boom considering column buckling and local wall buckling constraints. It is concluded that MMA can be a very efficient approximation scheme from simple problems to complex problems.

  • PDF

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.

Comparison between Variational Approximation and Eigenfunction Expansion Method for Wave Transformation over a Step Bottom (단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 비교)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.91-107
    • /
    • 2009
  • In order to compute linear wave transformation over a single step bottom, both variational approximation and eigenfunction expansion method are used. Both numerical results are in good agreement for reflection and transmission coefficients, surface displacement respectively. However x velocity profiles at the boundary of step are seen to be different to each other even though x velocity matching condition is used.

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

Structural Design of Piezoelectric Actuator Considering Polarization Direction and Continuous Approximation of Material Distribution (분극방향과 재료분포의 연속적 근사방법을 고려한 압전형 액추에이터의 구조설계)

  • Lim, Young-Seok;Yoo, Jeong-Hoon;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1102-1109
    • /
    • 2006
  • In this paper, the polarization of piezoelectric materials is considered to improve actuation since the piezoelectric polarization has influences on the performance of the actuator. The topology design of compliant mechanism can be formulated as an optimization problem of material distribution in a fixed design domain and continuous approximation of material distribution (CAMD) method has demonstrated its effectiveness to prevent the numerical instabilities in topology optimization. The optimization problem is formulated to maximize the mean transduction ratio subject to the total volume constraints and solved using a sequential linear programming algorithm. The effect of CAMD and the performance improvement of actuator are confirmed through Moonie actuator and PZT suspension design.