• Title/Summary/Keyword: linear acceleration

Search Result 610, Processing Time 0.025 seconds

Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines (I) - Hydraulic Model - (비압축성 재생형 기계에 대한 개선된 운동량 교환 이론 (I) - 수력학적 모델 -)

  • Park Mu Ryong;Chung Myung Kyoon;Yoo Il Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1238-1246
    • /
    • 2004
  • Momentum exchange theory has been generally used for an analysis of the regenerative turbomachines due to its direct description of the complicate circulatory flow. However, because its application is limited only to linear region and its model equations are incomplete on three variables, it needs further refinements. In the present study it is improved by introducing a central pivot of circulatory flow. Also, by assuming linear circulatory velocity distribution, mean radii of inlet and outlet flows through the impeller are newly suggested. By applying control volume analysis to both linear region and the acceleration region, the governing equation on the circulatory velocity is derived. As a result, systematic performance analysis on the entire region of the incompressible regenerative turbomachines can be carried out based on the proposed model equations.

Lateral Dynamic Model of an All-Wheel Steered Articulated Vehicle for Guidance Control (전차륜조향 굴절차량의 안내제어를 위한 횡방향 동역학 모델)

  • Yun, Kyoung-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1229-1238
    • /
    • 2011
  • This paper deals with the lateral dynamic model of an all-wheel steered articulated vehicle to design a guidance controller. Nonlinear dynamic model of articulated vehicle is developed by complementing the model about the BRT system of California PATH in U. S. A. and the Phileas system of the APTS in Netherlands. Linear lateral dynamic model has been derived from the nonlinear dynamic model under some assumptions associated with the driving conditions. To design a guidance controller, we derive a transfer function that is steering angle as input and lateral acceleration as output from the linear lateral dynamic model by applying the parameter of vehicle that is developed by Korea Railroad Research Institute. To validate the dynamic model, nonlinear dynamic model has been compared with a vehicle model that has been programmed in ADAMS, and linear dynamic model has been compared with a nonlinear dynamic model under sime assumptions.

Precise Control of a Linear Pulse Motor Using Neural Network (신경회로망을 이용한 리니어 펄스 모터의 정밀 제어)

  • Kwon, Young-Kuk;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.987-994
    • /
    • 2000
  • A Linear Pulse Motor (LPM) is a direct drive motor that has good performance in terms of accuracy, velocity and acceleration compared to the conventional rotating system with toothed belts and ball screws. However, since an LPM needs supporting devices which maintain constant air-gap and has strong nonlinearity caused by leakage magnetic flux, friction and cogging, etc., there are many difficulties in improvement on accuracy with conventional control theory. Moreover, when designing the position controller of LPM, the modeling error and load variations has not been considered. In order to compensate these components, the neural network with conventional feedback controller is introduced. This neural network of feedback error learning type changes the current commands to improve position accuracy. As a result of experiments, we observes that more accurate position control is possible compared to conventional controller.

  • PDF

Comparison among Active Roll Controllers for Rollover Prevention and Ride Comfort Enhancement (승차감 향상과 차량 전복 방지를 위한 능동 롤 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.828-834
    • /
    • 2014
  • This paper presents a comparison among three types of approaches to an ARC (Active Roll Control) with an AARB(Active Anti-Roll Bar) for a vehicle system. Lateral acceleration and road profile are considered as disturbance. The ARC is designed with an LQ SOF (Linear Quadratic Static Output Feedback) control, $H_{\infty}$ control and SMC (Sliding Mode Control). These approaches are compared in terms of rollover prevention and ride comfort. For comparison, Bode plot analysis based on linear model and frequency response analysis based on CarSim simulation are performed.

Dynamic Modeling and Analysis for an Axially moving String (축방향 이송속도를 갖는 현의 모델링 및 진동해석)

  • 신창호;정진태;한창수
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF

High Resolution Position Control of Linear Permanent Magnet Synchronous Motor for SMD Placement System (SMD Mounter용 선형 영구자석 동기기의 고정밀 위치제어)

  • Kim, Jang-Hwan;Sul, Seung-Ki;Jeon, Jeong-Yul;Choi, Yun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.314-316
    • /
    • 2001
  • This paper present the position control method for the application of permanent magnet linear synchronous motor. Controller is designed as a conventional P-PI controller, but the extra information is used such as velocity and acceleration from motion profiles. The profiles comes from S-Curve which is an optimized point-to-point motion profiles to achieve fast motions with minimum vibration[2]. In this application, the targets of the position control are maximum 10um position error within 10msec after respective ending point of position profiles. The implementation of the controller has been done in full digital way. All the controller is designed on the DSP TMS320VC33 control board. To prove performance of the controller, the experiment was performed with a servo linear motor.

  • PDF

Bidirectional pulse generator made from pulse forming lines for linear induction accelerator (펄스형성선로로 구성된 선형유도가속기용 양방향 펄스 전원)

  • Park, Jeong-Ho;Kim, Jong-Hae;Ko, Kwang-Cheol;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1681-1683
    • /
    • 1997
  • Linear induction accelerator devised for high current beam accelerating is divided into two types. In the first type, a unidirectional pulse is injected to an accelerating gap and in the second type, a bidirectional pulse is injected. The purpose of this paper is design and manufacture of bidirectional pulse generator for linear induction accelerator, where the pulse width for acceleration is more than 50[nsee] and the designed maximum charging voltage is more than 200[kV].

  • PDF

Experimental and Characteristic Analysis of Tubular Type Linear Oscillating Actuator with Halabch Magnetized PMs Mover (Halbach배열 영구자석 가동자로 구성된 Tubular형 직선 왕복 액추에이터의 특성해석 및 실험)

  • Jang, S.M.;Choi, J.Y.;Lee, S.H.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.756-758
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. This paper deals with the characteristics of tubular type linear oscillating actuator with Halbach magnet array. The magnetic field solutions are derived analytically in terms of vector potential, two dimensional cylindrical coordinate system and Maxwell's equations. Motor thrust, flux linkage, back emf are then derived. The results are shown in good conformity with those obtained from the commonly used finite element method. Test results such as thrust measurements are also given to confirm the analysis.

  • PDF

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

Optomechanical Design and Vibration Analysis for Linear Astigmatism-Free Three Mirror System (LAF-TMS)

  • Park, Woojin;Lim, Jae Hyuk;Lee, Sunwoo;Hammar, Arvid;Kim, Sanghyuk;Kim, Yunjong;Jeong, Byeongjoon;Kim, Geon Hee;Chang, Seunghyuk;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.47.1-47.1
    • /
    • 2019
  • We report the design and vibration analysis for the optomechanical structures of Linear Astigmatism Free - Three Mirror System (LAF-TMS). LAF-TMS is the linear astigmatism free off-axis wide-field telescope with D = 150 mm, F/3.3, and FOV = 5.51° × 4.13°. The whole structure consists of four optomechanical modules. It can accurately mount mirrors and also can survive from vibration environments. The Mass Acceleration Curve (MAC) is adapted to the quasi-static analysis. Modal, harmonic, and random vibration analysis have been performed under the qualification level of the launch system. We evaluate the final results in terms of von Mises stress and Margin of Safety (MoS).

  • PDF