• Title/Summary/Keyword: linear Boussinesq equation

Search Result 18, Processing Time 0.025 seconds

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

A Study on the Numerical Simulation of the Seismic Sea Waves in the East Sea based on the Boussinesq Equation (Boussinesq 방정식을 이용한 동해지진해일 수치실험 연구)

  • Kim, Sung-Dae;Jung, Kyung-Tae;Park, Soo-Young
    • Ocean and Polar Research
    • /
    • v.29 no.1
    • /
    • pp.9-31
    • /
    • 2007
  • Most seismic sea waves in the East Sea originate from earthquakes occurring near the Japanese west coast. While the waves propagate in the East Sea, they are deformed by refraction, diffraction and scattering. Though the Boussinesq equation is most applicable for such wave phenomena, it was not used in numerical modelling of seismic sea waves in the East Sea. To examine characteristics of seismic sea waves in the East Sea, numerical models based on the Boussinesq equation are established and used to simulate recent tsunamis. By considering Ursell parameter and Kajiura parameter, it is proved that Boussinesq equation is a proper equation for seismic sea waves in the East Sea. Two models based on the Boussinesq equation and linear wave equation are executed with the same initial conditions and grid size ($1min{\times}1min$), and the results are compared in various respects. The Boussinesq equation model produced better results than the linear model in respect to wave propagation and concentration of wave energy. It is also certified that the Boussinesq equation model can be used for operational purpose if it is optimized. Another Boussinesq equation model whose grid size is $40sec{\times}30sec$ is set up to simulate the 1983 and 1993 tsunamis. As the result of simulation, new propagation charts of 2 seismic sea waves focused on the Korean east coast are proposed. Even though the 1983 and 1993 tsunamis started at different areas, the propagation paths near the Korean east coast are similar and they can be distinguished into 4 paths. Among these, total energy and propagating time of the waves passing over North Korea Plateau(NKP) and South Korea Plateau(SKP) determine wave height at the Korean east coast. In case of the 1993 tsunami, the wave passing over NKP has more energy than the wave over SKP. In case of the 1983 tsunami, the huge energy of the wave passing over SKP brought about great maximum wave heights at Mukho and Imwon. The Boussinesq equation model established in this study is more useful for simulation of seismic sea waves near the Korean east coast than it is the Japanese coast. To improve understanding of seismic sea waves in shallow water, a coastal area model based on the Boussinesq equation is also required.

Derivation of Nonlinear Model for Irregular Waves on Miled Slpoe (비선형 불규칙 완경사 파랑 모델의 유도)

  • 이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.281-289
    • /
    • 1994
  • An equation set of nonlinear model for regular/irregular waves presented in this study can be applied to waves travelling from deep water to shallow water, which is different from the Boussinesq equations. The presented equations completely satisfy the linear dispersion relationship and when expanded, they are proven to be consistent with the Boussinesq equation of several types. In addition, the position of averaged velocity below the still water level is estimated based on the linear wave theory.

  • PDF

Application of Practical Scheme for Analysis of Tsunamis - Busan New Port Area (지진해일 해석을 위한 실용적인 기법의 적용 - 부산 신항만 지역)

  • Choi, Moon-Kyu;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.395-398
    • /
    • 2007
  • In this study, new dispersion-correction terms are added to leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering the dispersion effects of the linear Boussinesq equations for the propagation of tsunamis. The new model is applied to near Gadeok island in Pusan about The Central East Sea Tsunami in 1983 and The Hokkaldo Nansei Oki Earthquake Tsunami in 1993 one simulated in the study.

  • PDF

Calculation of Wave Deformation and Wave Induced Current around an Underwater Shoal by Boussinesq Equation (Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산)

  • Chun Insik;Seong Sangbong;Kim Guidong;Sim Jaeseol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.202-212
    • /
    • 2005
  • In the design of an of offshore structure located near an underwater shoal, the same amount of attention given to the wave height may have to be put to the wave induced current as well since some of the wave energy translates to the current. In the present study, two numerical models each based on the nonlinear Boussinesq equation and the linear mild slope equation are applied to calculate the wave deformation and secondly induced current around a shoal. The underwater shoal in Vincent and briggs' experiment (1989) is used here, and all non-breaking wave conditions of the experiment with various monochromatic and unidirectional or multidirectional spectral wave incidences are concerned. Both numerical models clearly showed wave induced currents symmetrically farmed along the centerline over the shoal. The calculated wave heights along a preset line also generally showed very nice agreements with the experimental values.

Development of Practical Dispersion-Correction Scheme for Propagation of Tsunamis (지진해일 전파모의를 위한 실용적인 분산보정기법의 개발)

  • Sohn, Dae-Hee;Cho, Yong-Sik;Ha, Tae-Min;Kim, Sung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.551-555
    • /
    • 2006
  • In this study, new dispersion-correction terms are added to a leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering dispersion effects of the linear Boussinesq equations for propagation of tsunamis. The numerical model developed in this study is tested to the problem that the initial free surface displacement is a Gaussian hump over a constant water depth, and the predicted numerical results are compared with analytical solutions. The results of the present numerical model are accurate in comparison with those of existing models.

Analysis of Generation and Amplification Mechanism of Abnormal Waves Occurred along the West Coast of Korea (서해안 이상파랑의 발생 및 증폭 기구 분석)

  • Yoon, Sung Bum;Shin, Choong Hun;Bae, Jae Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.314-326
    • /
    • 2014
  • On 31 March 2007, the abnormal wave occurred along the western coast of Korea. In order to investigate the generation mechanism of abnormal waves and to understand the amplification process of the abnormal waves, the observed data were analyzed and one-dimensional numerical model experiments were performed by using both the linear shallow water equation and the linear Boussinesq equation models. Various types of pressure jump for the abnormal waves previously proposed by other researchers were reviewed. As a result, it was not possible to reproduce the abnormal waves from the previously proposed pressure jumps. In this study, we proposed a new form of pressure jump, and numerical simulations were performed in order to check the validity of the proposed pressure jump. The numerical results showed that the calculated period of abnormal waves and the maximum water elevations agreed reasonably well with those of the observations.

Practical Dispersion-Correction Scheme for Linear Shallow-Water Equations to Simulate the Propagation of Tsunamis (지진해일 전파모의를 위한 선형 천수방정식을 이용한 실용적인 분산보정기법)

  • Cho, Yong-Sik;Sohn, Dae-Hee;Ha, Tae-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1935-1939
    • /
    • 2006
  • In this study, the new dispersion-correction terms are added to leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering the dispersion effects such as linear Boussinesq equations for the propagation of tsunamis. And, dispersion-correction factor is determined to mimic the frequency dispersion of the linear Boussinesq equations. The numerical model developed in this study is tested to the problem that initial free surface displacement is a Gaussian hump over a constant water depth, and the results from the numerical model are compared with analytical solutions. The results by present numerical model are accurate in comparison with the past models.

  • PDF

On the Study of Nonlinear Wave Diffraction by the Breakwaters (방파제 주위에서의 비선형 회절 현상에 대한 고색)

  • 조일형;김장환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.350-356
    • /
    • 1993
  • We carry out a numerical calculation to understand the nonlinear wave deformation around breakwaters using the Boussinesq equation, which is weakly nonlinear and weakly dispersive shallow water equation. A numerical method based on a finite element scheme and fourth order Runge-Kutta algorithm is employed to investigate the diffraction of incident waves by the breakwater. As a computational model, two-dimensional wave flume is treated. The breakwaters is perpendicular to the side wall of a channel. From the numerical results, the wave deformations according to the change of the length and the thickness of breakwaters are investigated. We also investigate the effect of the nonlinearity by comparing the results with the linear solutions.

  • PDF

Three-dimensional crack analysis by fractional linear mapping (선형분수사상을 이용한 3차원 균열해석)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-78
    • /
    • 1995
  • In this study the method of analysis for three-dimensional plane crack problem by fractional linear mapping is given. Using this method we can obtain the exact solutions of significantly different configurations of the crack. In the example image crack configurations by mapping of elliptic crack are illustrated. And the stress intensity factors along the image crack tips are calculated.