• Title/Summary/Keyword: lightweight mortar

Search Result 70, Processing Time 0.025 seconds

Fundamental Properties of Fireproofing Mortar Containg Perlite (펄라이트를 혼합한 내화모르타르의 기초적 물성)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Kyung-Hwan;Ha, Sang-Woo;Jung, Jea-Guane
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.605-608
    • /
    • 2006
  • The purpose of this research is to develop the fireproofing mortar through the improved fireproofing properties. Therefore, after manufactured the mortor by changing the mixture rate of the perlite(PL) in three level, we investigated air content, flow value and compressive strength. As a result of this research, as the mixture rate was increased and the air content was also increased. But the flow ability and the compressive strength of the mortar were comparably decreased. Beside, we also found that there is efficiency of the lightweight by mixed PL.

  • PDF

A STUDY ON THE PROPERTIES OF HARDENED CEMENT MORTAR MIXED WITH WASTE INCINERATED ASH (쓰레기 소각재를 혼입한 시멘트 경화체의 특성에 관한 연구)

  • 이승한;정용욱;한형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.190-195
    • /
    • 1997
  • The purpose of this study was to use daily waste incinerated ash, which was reclaimed worthlessly, as substitutes of fine aggregates in concrete. Various kinds of admixture was utilized to strengthen the cement mortar mixed with waste incinerated ash, and altered the curing condition to diminish the rate of expansion. By the results of this experiment, it was possible to produce the lightweight concrete, charactered with the gravity below 1.5 and over 160kg/$\textrm{cm}^2$ compressive strength by replacing all fine aggregates with waste incinerated ash. It was also observed that the low temperature curing condition, lessoned gas exhausts, was effective to increase the strength of cement mortar.

  • PDF

The Examination Fire Resistance of Mortar According to Particle Size Distrivution as Oyster Shell Fine Aggregate (굴 패각의 잔골재 입도분포 변화에 따른 모르타르의 내화성 검토)

  • Choi, In-Kwon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.71-72
    • /
    • 2017
  • The oyster shell is lightweight and exhibits strength characteristics similar to sand. In this study, mortar specimens were fabricated by crushing them and processed to 5mm or less of the fine aggregate standard, and examined the fire resistance of the mortar according to changes in particle size distribution. In this experiment, seven particle size distribution conditions were tested. In addition, the mixing ratio was fixed at 1: 3, and the experiment was conducted in terms of the volume ratio because the densities of sand and oyster shells were different.

  • PDF

Microstructural properties of mortar as a surface roughness of waste glass bead (폐유리 경량골재의 표면 거칠기에 따른 모르타르의 미세구조적 특성 )

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Choi, Byung-Cheol;Kim, Moon-kyu;Ji, Sung-Jun;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.139-140
    • /
    • 2023
  • This study aims to determine the microstructural characteristics of waste glass beads, a lightweight aggregate manufactured from waste glass powder, when incorporated into mortar in order to examine its usability depending on the particle shape.

  • PDF

Experimental Review on Application of Lightweight UHPC as Repair Mortar and Cement Panel (경량 UHPC의 보수용 모르타르 및 시멘트 패널로서의 활용 가능성에 대한 실험적 검토)

  • Jae Sung Ahn;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.210-217
    • /
    • 2023
  • Various performances of ultra-high performance concrete (UHPC) applied with microplastics and expanded polystyrene (EPS) beads were evaluated. CompressIve and flexural strength, performance after ignition, flow-down in fresh state, and effective bond strength were evaluated. Designed weight of the cement panel with these mixtures was calculated based on the flexural strength. As a result of the experiments, it was confirmed that the EPS could reduce the density of UHPC with largest range. By maximum addition of EPS beeds, the density of UHPC decreased to 1300 kg/m3, and the compressive and flexural strengths for this mixtures were in ranges of 20-30 MPa and 15-20 MPa, respectively. On the other hand, lightest cement panel could be designed with UHPC having a density ranges about 2.0 g/cm3.

A Study on the Early Strength Prediction of Lightweight Polymer Mortars by the Maturity Method (적산온도법에 의한 경량 폴리머 모르터의 초기강도 예측에 관한 연구)

  • 이윤수;대빈가언;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.191-202
    • /
    • 1998
  • The maturity method in which the strength increase of cement concrete is expressed as a function of an intergral of the curing period and temperature of the concrete has often been applied to its strength prediction. For the purpose of the application of the maturity method to the compressive strength prediction for lightweight polymer mortars using an unsaturated polyester resin as a binder, the lightweight polymer mortars with various catalyst and accelerator contents, are prepared. tested for compressive strength, and the datum temperatures for the maturity equations are estimated. The maturity is calculated by using the maturity equations with the estimated datum temperature. The compressive strengths of the lighweight polymer mortars are predicted from the maturity-compressive strength relationships.

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

Mechanical Properties of Lightweight Mortar in Accordance with the Particle Size and Replacement Ratio of the Wasted Tire Chip (폐타이어 분말의 치환율과 입자크기에 따른 경량 모르타르의 역학적 특성)

  • Yang, Hun;Lee, Yong;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.342-347
    • /
    • 2015
  • This study is basic experiment which prevents indiscriminate reclamation and recycles the wasted tire in order to solve environmental pollution according to generation rate of the wasted tire from recently industrial development. By applying as the substitute material of the lightweight aggregate among the constructional materials in order to evaluate the lightness of the wasted tire chip and suggest the recycling plan of the wasted tire chip. The prior experiment did the replacement ratio of the wasted tire with 20%, 40%, 60%, 80%, 100%, etc. and made a study on the strength and density properties. Based on the prior experiment of wasted tire, the replacement ratio was fixed at 15, 20, 25%, particle size of wasted tire was fixed at 0.2, 0.8, 1~2, 3~5, 5~7(mm). As a result, it is supposed that the best replacement ratio and particle size are 15% and 1~2mm, respectively.

A Study on Trend for Recycling Technology of Waste Wood and Its Utilization as Lightweight Fine Aggregate (폐목재의 활용을 위한 기술동향 분석 및 경량잔골재로서의 활용방안에 관한 연구)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.84-90
    • /
    • 2012
  • Patents in Korea, Japan and the U.S. were searched at the Korea Intellectual Property Rights Information Service (KIPRIS) of Korea Institute of Patent Information using related keywords in order to analyze the trend of patents on the usage of waste wood. Materials on a total of 77 patents in Korea, 317 patents in Japan, and 316 patents in the U.S. that had been registered as patents as of Dec. 31, 2011 were collected. Among the collected materials, the patents rejected, expired, annulled, withdrawn and waived as well as those which had little relationship with waste wood were excluded and the 71 patents in Korea, 227 patents in Japan and 216 patents in the U.S. were finally selected for analysis. In addition, the properties of the mortar which used waste wood as an alternative for a part of the fine aggregate were tested as a basic study for the usage of waste wood as a lightweight aggregate for concrete. For the test, the waste wood of the pine tree was crushed, sifted through No. 8(2.4 mm) sieve, and then dried for 24 hours at $100{\pm}5^{\circ}C$. As it is known that some kinds of tree prevent the hardening of cement when the wood is mixed with cement, the crushed waste wood in this study was dipped in the water of $20^{\circ}C$, $50^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$ and then dried up before testing the properties of the mortar to examine the effect of the preliminary treatment of crushed waste wood.

  • PDF