• Title/Summary/Keyword: light-weight concrete

Search Result 275, Processing Time 0.031 seconds

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

A Comparative Study of the Houses of Mies van der Rohe and Le Corbusier (미이스 반 데르 로에 주택과 르 꼬르뷔제 주택의 비교 연구)

  • 김용립
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2004
  • There are probably no architects of the 20th Century who had more influence on modern architecture than Mies van der Rohe and Le Corbusier. Although the two architects share one thing in common, namely, both are master of modernism, each has developed unique architecture of his own. The objective of this study is to investigate the characteristics of their works through a comparison analysis of the Ideas, design principles and architectural language reflected in the works, focusing on the houses. this study will also aim to provide a foundation for a new design that harmonizes the design principles and architectural language of the two. Through the study the following common points and differences were found between the houses of the two. A) Common points: Both architects avoided ornamentation In houses while placing weight on the functions of houses and they tried to plan rational floor plans by separating the wall from the structure. B) Differences: \circled1 The houses of Mies express the structure in a straight forward manner, while those of Corbusier are formative houses focusing more on shapes. \circled2 The shapes of the houses of Mies are limited to basic shapes, quadrangle while those of Corbusier employ various geometric curves. \circled3 Using steel and glass, the houses of Mies are light and transparent. On the contrary, using concrete, the houses of Corbusier are somewhat bulky with Three-dimensional changes. \circled4 The houses of Mies show the value of moderation based upon the classical principles of design, while the houses of Corbusier show the value of moderation based upon geometry. \circled5 The houses of Mies feature horizontal intoners with flexibility. However, Corbusier's houses have vertical interiors with some changes in the cross sections. \circled6 In terms of material, the interiors of Mies' houses employ materials with various tones and textures, while interiors of Corbusier's houses are painted in simple white. Summing up these characteristics, it could be said that the houses of Mies have logical and rational beauty, whereas the houses of Corbusier have more emotional beauty.

Hydration Properties of High-strength Cementitious Composites Incorporating Waste Glass Beads (폐유리발포비드를 혼입한 고강도 시멘트 복합체의 수화 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Lee, Sang-Soo;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the effect of a sudden decrease in internal humidity and a decrease in hydration level due to the tight internal structure of high-strength concrete and cement composites was investigated. To verify the change in the internal Si hydration, waste glass foam beads were used as a lightweight aggregate, and the internal unreacted hydrate reduction and hydrate formation tendency were identified over the mid- to long-term. Waste glass foam beads were mixed with 5, 10, and 20 %, and were used by pre-wetting. As the mixing rate of the waste glass foamed beads increased, the strength showed a tendency to decrease. In addition, when the mixing amount of pre-wetted waste glass foam beads increases inside through XRD analysis, TGA analysis, and Si NMR analysis, it is judged that the hydration degree of internal Si is different because moisture is supplied to the paste.

Evaluation of Floor Vibration Existing in Apartment Building (기존 아파트 바닥의 수직진동 성능 평가)

  • Han Sang Whan;Lee Min Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.221-228
    • /
    • 2004
  • In recent years building floors become larger and more spacious due to the development of new design methods and high strength and light weight materials. However, such long span floor systems may provide smaller amount of damping and have a longer period so that they may be more vulnerable to the floor vertical vibration. In Korea when floors are to be checked against the floor vertical vibration, the provisions developed in foreign countries have been used. However these guidelines have been developed based on human perception, which may vary from country to country. Also, Korea have particular floor systems, such as flat plate floor system of apartment building. This study attempts to evaluate the vibration performance of the floors in typical apartment buildings. Two different floors with the area of $28 m^2$ and $32 m^2$ were investigated. The criteria provided by ATC-1(1999), AISC-11(1997), AIJ(1991) and the local criteria developed in the previous study(Han, 2003) was used to check the acceptability of the floor vertical vibration.

Serviceability Assessment of a K-AGT Test Bed Bridge Using FBG Sensors (광섬유 센서를 이용한 경량전철 교량의 사용성 평가)

  • Kang, Dong-Hoon;Chung, Won-Seok;Kim, Hyun-Min;Yeo, In-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2007
  • Among many types of light rail transits (LRT), the rubber-tired automated guide-way transit (AGT) is prevalent in many countries due to its advantages such as good acceleration/deceleration performance, high climb capacity, and reduction of noise and vibration. However, AGT is generally powered by high-voltage electric power feeding system and it may cause electromagnetic interference (EMI) to measurement sensors. The fiber optic sensor system is free from EMI and has been successfully applied in many applications of civil engineering. Especially, fiber Bragg grating (FBG) sensors are the most widely used because of their excellent multiplexing capabilities. This paper investigates a prestressed concrete girder bridge in the Korean AGT test track using FBG based sensors to monitor the dynamic response at various vehicle speeds. The serviceability requirements provided in the specification are also compared against the measured results. The results show that the measured data from FBG based sensors are free from EMI though electric sensors are not, especially in the case of electric strain gauge. It is expected that the FBG sensing system can be effectively applied to the LRT railway bridges that suffered from EMI.

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

A Study on Fabrication and Characterization of Inorganic Insulation Material by Hydrothermal Synthesis Method (2) (수열합성법을 이용한 무기계 단열소재 제조방법 및 특성에 관한 연구 (2))

  • Seo, Sung-Kwan;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.225-232
    • /
    • 2013
  • The inorganic insulating material was fabricated with quartzite, ordinary portland cement(OPC), lime, anhydrous gypsum and foaming agent by hydrothermal reaction. The inorganic insulating material was fabricated by using autoclave chamber under high-temperature and high-pressure. The inorganic insulating material is a porous lightweight concrete. Because of its porous structure, properties of inorganic insulating material were light-weight and high-heat insulation property. Properties of fabricated inorganic insulating material were $0.26g/cm^3$ in specific gravity, 0.4MPa in compressive strength and 0.064W/mK in thermal conductivity. In this study, the inorganic insulating material was fabricated and analyzed at different size of quartzite/OPC, various foaming reagent and functional additives to improve the properties. Consequently, polydimethylsiloxane can improve density and thermal conductivity. Especially, polydimethylsiloxane showed excellent improvement in compressive strength.