• 제목/요약/키워드: light-driven

검색결과 301건 처리시간 0.025초

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

고출력 3색 LED를 이용한 휴대용 무영등의 개발 (Development of Portable Astral Light using the High Power 3-Color LEDs)

  • 유성미;천민우
    • 한국항행학회논문지
    • /
    • 제15권6호
    • /
    • pp.1111-1117
    • /
    • 2011
  • 본 연구에서는 의료용 신조명 부품으로 주목받고 있는 고출력 LED를 사용해 구강구조 확인을 위한 치과영역, 진료 및 수술실에서 환부에 대한 작은 범위(국소부위)의 무영 촬영이 가능한 휴대용 LED Light를 설계 개발하였다. 개발에 적용한 LED는 피사체 고유의 Tone에 대한 섬세한 표현력과 입체감을 부각시키기 위해 다양한 색상 구현 및 광량조절이 가능하도록 3색 LED를 사용했다. 사용된 LED의 전기적 특성 및 광학적 특성을 고려해 고효율의 Light Module를 개발했으며 휴대 사용을 위해 낮은 전압에서도 구동이 가능한 SMPS를 제작했다. 또한 PWM 제어방식을 이용해 단색광부터 백색광까지 32,768개의 다양한 색상 구현이 가능했다.

볼로미터형 테라헤르츠 센서의 광학적 특성 연구 (Optical Characteristics of Bolometric Terahertz Sensor)

  • 한명수;송우섭;홍정택;이동희
    • 센서학회지
    • /
    • 제27권5호
    • /
    • pp.335-339
    • /
    • 2018
  • The optical characteristics of a terahertz (THz) antenna-coupled bolometer (ACB) detector were evaluated using a pulsed quantum cascade laser (QCL) and radiation blackbody sources. We investigated a method for measuring the responsivity and noise-equivalent power (NEP) of the THz detector using two different types of light sources. When using a QCL source with a frequency of 3 THz, the average responsivity of 24 devices was $1.44{\times}10^3V/W$ and the average NEP of those devices was $3.33{\times}10^{-9}W/{\surd}Hz$. The average responsivity and NEP as measured by blackbody source were $1.79{\times}10^5V/W$ and $6.51{\times}10^{-11}W/{\surd}Hz$, respectively, with the measured values varying depending on the light source. This was because the output power of each light source was different, with the laser source being driven by a pulse type wave and the blackbody source being driven by a continuous wave. The power input to the THz sensor was also different. Futhermore, the responsivity and NEP values measured using band pass filter (BPF) were similar to those measured when using only THz windows. It was found that ACB sensor responds normally in the THz region to both the laser and the blackbody source, and the method was confirmed to effectively evaluate the characteristics of the THz sensor.

폭발형 고섬광 발생장치의 설계 변수에 관한 실험적 연구 (Experimental Study on Design Parameters of Explosive-driven High-intensity Flash Generator)

  • 김경식;안재운;양희원;권미라
    • 대한기계학회논문집B
    • /
    • 제40권5호
    • /
    • pp.283-288
    • /
    • 2016
  • 목표 대상을 치명적이거나 파괴하지 않고 제압할 수 있는 무기를 비살상무기라 하며, 그중 고섬광발생장치는 강한 섬광으로 적의 광학센서를 무력화시키거나 시력을 일시적으로 마비시키는 무기체계이다. 본 연구에서는 고폭화약에 의한 충격파로 인해 발생한 플라즈마를 이용한 폭발형 고섬광발생장치의 형상에 대한 설계 방안을 도출하여 시료를 제작하고 광학센서를 사용한 기초시험을 수행하였다. 또한, 시험결과를 분석하여 설계 변수에 따른 고섬광 효과를 최대화시키는 방안을 도출하고자 한다. 충전가스 종류로 아르곤보다 제논의 경우 2배 가량 광도가 높게 나타났으며, 비활성가스가 광도에 미치는 영향을 알아보기 위한 비교로써 공기보다 제논의 경우 4배 가량 광도가 높게 나타났다. 또한, 화약량이 증가할수록 원주방향으로 전달되는 충격파가 도달할 수 있는 단면적이 증가할수록 광도가 증가함을 알 수 있었으며, 단일기폭보다 이중기폭의 경우 광원이 2배가 되어 광도도 2배됨을 입증하였다.

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst

  • Zhang, Wanzhong;Yu, Caihong;Sun, Zhiming;Zheng, Shuilin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.957-967
    • /
    • 2018
  • A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.

연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화 (Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution)

  • 이동규;조정훈;박대진
    • 대한임베디드공학회논문지
    • /
    • 제14권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

교류전원 구동방식에 의한 형광 OLED의 발광 특성 (Emission Characteristics of Fluorescent OLED with Alternating Current Power Source Driving Method)

  • 서정현;김지현;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.104-109
    • /
    • 2014
  • To operate organic light emitting device (OLED) with alternating current (AC) power source without AC/DC(direct current) converter, we fabricated the fluorescent OLED and measured the emission characteristics with AC and DC. The OLED operated by AC showed higher maximum current efficiency of 8.2 cd/A and maximum power efficiency of 8.3 lm/W. But current efficiency and power efficiency of AC driven OLED showed worse than DC driven OLED at high voltage above 10 V. This result can be explained by the peak voltage of AC was $\sqrt{2}$ times than DC, In case of low driving voltage the emission characteristics were improved by the peak voltage of AC, but in case of high driving voltage the emission efficiencies were decreased by the roll off phenomena. Finally, serial OLED arrays using twelve OLEDs driven by AC 110 V showed average voltage of 9.17 V, voltage uniformity of 99.0%, average luminance of $1,175cd/m^2$, luminance uniformity of 94.4%.

마찰 구동형 압전 작동기를 이용한 카메라 손떨림 진동보상 기법 연구 (On the Compensation of Camera Hand Shaking Using Friction Driven Piezoelectric Actuator)

  • 조명신;황재혁
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.23-30
    • /
    • 2015
  • The focal plane image stabilization for a camera is one of the most effective method that can increases the digital camera's image quality by compensating the vibration disturbance. The optical image stabilization can be implemented by making the focal plane to trace the path of incident light. To control the position of focal plane motion compensating stage precisely, a nonlinear control algorithm has been applied by considering coulomb friction which is nonlinear behavior of the compensator system. In our study, we have analyzed the hand shaking vibration using the gyro sensor, and made a mathematical model of compensating stage containing optical sensor and piezo-actuator. Then the nonlinear control algorithm has been designed and its performance has been verified by experiment. In this study, a friction driven peizo-electric actuator with $1{\mu}m$ resolution and 10mm/s speed has been used for stage movement.

CCFL 및 LED 모니터 광원 효율 분석 (Analysis on the Light Source Efficiency of CCFL and LED Monitors)

  • 신희우;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제21권6호
    • /
    • pp.44-50
    • /
    • 2021
  • 본 논문은 최적의 모니터 효율성을 설계하기 위해 CCFL과 LED 모니터의 광효율을 비교 분석한다. LCD 디스플레이 광원으로 많이 사용이 되고 있는 냉음극관 램프(Cold Cathode Fluorescent Lamp, CCFL)은 초기 구동 시 1,200[V]이상의 고전압과 점등 후 400 ~ 800[V]의 일정한 정상전압을 공급한다. 또한 3 ~ 6[mA]의 전류를 안정화 시킬 수 있는 전원회로가 필요하다. 고전압을 인가를 하게 되면 인버터에 무리가 많이 가고 냉음극관 램프에 많은 열이 발생을 하여 BLU(Back Light Unit)에 상당한 손상을 주어 그을리는 현상 발생, 이로 인하여 화면 출력 시 화면이 정상적인 색상을 출력을 못하고 노란색 출력, 화면 어두워짐을 확인할 수 있었다. 이러한 증상을 미연에 방지를 하고자 LCD디스플레이의 광원을 냉음극관 램프(Cold Cathode Fluorescent Lamp, CCFL)를 대신하여 발광다이오드(Light Emitting Diode, LED)을 이용하면 효율을 증대할 수 있다. 결론적으로 CCFL 방식보다 LED방식의 효율이 좋다는 것을 증명한다.