• Title/Summary/Keyword: light emitting transistor

Search Result 81, Processing Time 0.027 seconds

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

A Study on the Effects of the Optical Characteristics of Backlight Sources on the Photo Leakage Currents of a-Si:H Thin Film Transistor (비정질 실리콘 TFT의 광누설 전류에 Backlight 광원의 광학적 특성이 미치는 영향에 대한 연구)

  • Im, Seung-Hyeok;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.844-847
    • /
    • 2008
  • The photo leakage currents of a conventional hydrogenated amorphous silicon(a-Si:H) thin film transistor(TFT) were investigated and analyzed in case of illumination from various light sources such as halogen lamp, cold cathode fluorescent lamp(CCFL) backlight, and white light emitting diode(LED) backlight. The photo leakage characteristics showed the apparent differences in the leakage level and in the $I_{on}/I_{off}$ ratio in spite of the similar luminances of light sources. This leakage level is expected to be related to the wavelength of the lowest intensity peak from the spectral characteristics of light sources.

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

A Study on the Effects of the Optical Characteristics of backlight Sources on the Photo Leakage Currents of a-Si:H Thin Film Transistor (비정질 실리콘 TFT의 광누설 전류에 Backlight 광원의 광학적 특성이 미치는 영향에 대한 연구)

  • Im, S.H.;Kwon, S.J.;Cho, E.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.55-56
    • /
    • 2008
  • The photo leakage currents of a conventional hydrogenated amorphous silicon(a-Si:H) thin film transistor(TFT) were investigated and analyzed in the case of illumination from various lightsources such as halogen lamp, cold cathode fluorescent lamp(CCFL) backlight, and white light emitting diode(LED) backlight The photo leakage characteristics showed the apparent differences in the leakage level and in the $I_{on}/I_{off}$ ratio in spite of the similar luminances of light sources. This leakage level is expected to be related to the wavelength of the lowest intensity peak from spectral analysis of light sources.

  • PDF

Applications of Nanowire Transistors for Driving Nanowire LEDs

  • Hamedi-Hagh, Sotoudeh;Park, Dae-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • Operation of liquid crystal displays (LCDs) can be improved by monolithic integration of the pixel transistors with light emitting diodes (LEDs) on a single substrate. Conventional LCDs make use of filters to control the backlighting which reduces the overall efficiency. These LCDs also utilize LEDs in series which impose failure and they require high voltage for operation with a power factor correction. The screen of small hand-held devices can operate from moderate brightness. Therefore, III-V nanowires that are grown along with transistors over Silicon substrates can be utilized. Control of nanowire LEDs with nanowire transistors will significantly lower the cost, increase the efficiency, improve the manufacturing yield and simplify the structure of the small displays that are used in portable devices. The steps to grow nanowires on Silicon substrates are described. The vertical n-type and p-type nanowire transistors with surrounding gate structures are characterized. While biased at 0.5 V, nanowire transistors with minimum radius or channel width have an OFF current which is less than 1pA, an ON current more than 1 ${\mu}A$, a total delay less than 10 ps and a transconductance gain of more than 10 ${\mu}A/V$. The low power and fast switching characteristics of the nanowire transistor make them an ideal choice for the realization of future displays of portable devices with long battery lifetime.

Hysteresis Phenomenon of Hydrogenated Amorphous Silicon Thin Film Transistors for an Active Matrix Organic Light Emitting Diode (능동형 유기 발광 다이오드(AMOLED)에서 발생하는 수소화된 비정질 실리콘 박막 트랜지스터(Hydrogenated Amorphous Silicon Thin Film Transistor)의 이력 (Hysteresis) 현상)

  • Choi, Sung-Hwan;Lee, Jae-Hoon;Shin, Kwang-Sub;Park, Joong-Hyun;Shin, Hee-Sun;Han, Min-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.112-116
    • /
    • 2007
  • We have investigated the hysteresis phenomenon of a hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and analyzed the effect of hysteresis phenomenon when a-Si:H TFT is a pixel element of active matrix organic light emitting diode (AMOLED). When a-Si:H TFT is addressed to different starting gate voltages, such as 10V and 5V, the measured transfer characteristics with 1uA at $V_{DS}$ = 10V shows that the gate voltage shift of 0.15V is occurred due to the different quantities of trapped charge. When the step gate-voltage in the transfer curve is decreased from 0.5V to 0.05V, the gate-voltage shift is decreased from 0.78V to 0.39V due to the change of charge do-trapping rate. The measured OLED current in the widely used 2-TFT pixel show that a gate-voltage of TFT in the previous frame can influence OLED current in the present frame by 35% due to the change of interface trap density induced by different starting gate voltages.

Integration of 4.5' Active Matrix Organic Light-emitting Display with Organic Transistors

  • Lee, Sang-Yun;Koo, Bon-Won;Jeong, Eun-Jeong;Lee, Eun-Kyung;Kim, Sang-Yeol;Kim, Jung-Woo;Lee, Ho-Nyeon;Ko, Ick-Hwan;Lee, Young-Gu;Chun, Young-Tea;Park, Jun-Yong;Lee, Sung-Hoon;Song, In-Sung;Seo, O-Gweon;Hwang, Eok-Chae;Kang, Sung-Kee;Pu, Lyoung-Son;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.21-23
    • /
    • 2006
  • We developed a 4.5" 192${\times}$64 active matrix organic light-emitting diode display on a glass using organic thin-film transistor (OTFT) switching-arrays with two transistors and a capacitor in each sub-pixel. The OTFTs has bottom contact structure with a unique gate insulator and pentacene for the active layer. The width and length of the switching OTFT is 800${\mu}m$ and lO${\mu}m$ respectively and the driving OTFT has 1200${\mu}m$ channel width with the same channel length. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were $10^6,0.3{\sim}0.5$ $cm^2$/V·sec, order of 10 ${\mu}A$ and over 100 ${\mu}A$, respectively. AMOLEDs composed of the OTFT switching arrays and OLEDs made using vacuum deposition method were fabricated and driven to make moving images, successfully.

Effect of Thermal Heat Treatment on the Characteristics of Vertical Type Organic Thin Film Transistor Using Alq3 as Active Layer and Its Application for OLET

  • Oh, Se-Young;Kim, Young-Do;Hwang, Sun-Kak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.644-647
    • /
    • 2007
  • We have fabricated vertical type organic thin film transistor using tris-8-hydroxyquinoline aluminum $(Alq_3)$. The effects of the growth control of $Alq_3$ thin layer on the grain structure and the flatness of film surface have been investigated. In addition, we have fabricated light emitting transistor and then investigated electroluminescent properties.

  • PDF

Large Size and High Resolution Organic Light Emitting Diodes Based on the In-Ga-Zn-O Thin Film Transistors with a Coplanar Structure

  • Hong Jae Shin
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.511-516
    • /
    • 2023
  • Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) with a coplanar structure were fabricated to investigate the feasibility of their potential application in large size organic light emitting diodes (OLEDs). Drain currents, used as functions of the gate voltages for the TFTs, showed the output currents had slight differences in the saturation region, just as the output currents of the etch stopper TFTs did. The maximum difference in the threshold voltages of the In-Ga-Zn-O (a-IGZO) TFTs was as small as approximately 0.57 V. After the application of a positive bias voltage stress for 50,000 s, the values of the threshold voltage of the coplanar structure TFTs were only slightly shifted, by 0.18 V, indicative of their stability. The coplanar structure TFTs were embedded in OLEDs and exhibited a maximum luminance as large as 500 nits, and their color gamut satisfied 99 % of the digital cinema initiatives, confirming their suitability for large size and high resolution OLEDs. Further, the image density of large-size OLEDs embedded with the coplanar structure TFTs was significantly enhanced compared with OLEDs embedded with conventional TFTs.

Characteristics and Fabrication of Vertical Type Organic Light Emitting Transistors

  • Oh, Se-Young;Kim, Hee-Jeong;Lee, Ji-Young;Ryu, Seung-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1440-1442
    • /
    • 2005
  • We have fabricated vertical type organic thin film transistors (OTFTs) using organic semiconductor materials such as F16CuPc, NTCDA, PTCDI C-8 and C60. The layers of OTFT were fabricated by vacuum evaporation technique and spin casting method onto the Indium Tin Oxide (ITO) coated glass. I-V characteristics and on-off ratios of the fabricated OTFTs were investigated. In addition, we have fabricated light emitting transistor using MEH-PPV and then investigated EL electroluminescent properties.

  • PDF