• Title/Summary/Keyword: level of error

Search Result 2,504, Processing Time 0.03 seconds

A Study on the Automatic Level Measurement for Land Leveling (경지 균평 작업을 위한 자동 표고 측정에 관한 연구)

  • 김종안;김수현;곽윤근
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.269-278
    • /
    • 1997
  • An automatic level measurement system was developed to level the land fer direct seeding of rice. A laser transmitter/receiver set was used to measure land-level. The inclination error occurred in level measurement on irregular land surface could be compensated by attaching rotating mass. The level measuring experiments were performed on three kinds of different shapes(step, random, sine). This system could accurately measure step level of which amplitude was 40mm in 0.5s, random level change within $\pm$ 5mm maximum measurement error, and sine level change of which spatial frequency was 0.5m-1. To verify performance of the inclination error compensation system, frequency transfer function(acceleration input vs. inclination error) was computed by spectral analysis. The inclination error was decreased about 20㏈ by error compensation system.

  • PDF

Flexure Error Analysis of RLG based INS (링레이저 자이로 관성항법시스템의 편향 오차 해석)

  • Kim Kwang-Jin;Yu Myeong-Jong;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When MLP's are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP's are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World Heritage Site "Hahoe Village," we verified that the prediction performance of MLP with the modified error function is superior to that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm.

An Analysis on the Error According to Academic Achievement Level in the Fractional Computation Error of Elementary Sixth Graders (초등학교 6학년 학생이 분수 계산문제에서 보이는 오류의 학업성취수준별 분석)

  • Park, Miyeon;Park, Younghee
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.23-47
    • /
    • 2017
  • The purpose of this study is to analyze the types of errors that may occur in the four arithmetic operations of the fractions after classified according to the level of academic achievement for sixth-grade elementary school student who Learning of the four arithmetic operations of the fountain has been completed. The study was proceed to get the information how change teaching content and method in accordance with the level of academic achievement by looking at the types of errors that can occur in the four arithmetic operations of the fractions. The test paper for checking the type of errors caused by calculation of fractional was developed and gave it to students to test. And we saw the result by error rate and correct rate of fraction that is displayed in accordance with the level of academic achievement. We investigated the characteristics of the type of error in the calculation of the arithmetic operations of fractional that is displayed in accordance with the level of academic achievement. First, in the addition of the fractions, all levels of students showing the highest error rate in the calculation error. Specially, error rate in the calculation of different denominator was higher than the error rate in the calculation of same denominator Second, in the subtraction of the fractions, the high level of students have the highest rate in the calculation error and middle and low level of students have the highest rate in the conceptual error. Third, in the multiplication of the fractions, the high and middle level of students have the highest rate in the calculation error and low level of students have the highest rate in the a reciprocal error. Fourth, in the division of the fractions, all levels of students have the highest r rate in the calculation error.

  • PDF

Flexure Analysis of Inertial Navigation Systems

  • Kim, Kwang-Jin;Park, Chan-Gook;Park, Jai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1958-1961
    • /
    • 2004
  • Ring Laser Gyroscopes used as navigational sensors inherently experience a lock-in region, where very low rotational rates are not measurable. Most RLG manufacturers use a mechanical dither motor that applies a small oscillatory rotational motion larger than this region to resolve this problem. Any input acceleration that bends this dithering axis causes flexure error, which is a noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

  • PDF

The Analysis of Relationship between Academic Achievement Level of Concept Learning and Error Type in Online Programming Course (온라인 프로그래밍 개념학습 성취수준과 오류유형과의 관계 분석)

  • Kim, Jiseon;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.5
    • /
    • pp.43-51
    • /
    • 2014
  • This study has purpose on analyzing the error types which are identified after middle and high school students perform the online programming assignments and also has the purpose on the analysis of correlation between the frequency of error occurrence according to academic achievement level in programming concept learning and types of errors analyzed previously. For this study, the syntax, logical, and coding errors are analyzed from the performed results of programming research assignment for 88 students. Analyzed results show that the logical error has the highest occurrence rate of 69.3% among three types of errors, and it has been shown meaningful difference in the frequency of error occurrence between three achievement level groups of high, middle, and low. In the correlation analysis of achievement level and error types, it shows negative relationship between logical error and coding error, and therefore it can be concluded that as achievement level is higher, both logical and coding errors tend to occur less. In the correlation analysis in error types, it shows positive relationship between syntax error and coding error.

  • PDF

Adjustment of 1st order Level Network of Korea in 2006 (2006년 우리나라 1등 수준망 조정)

  • Lee, Chang-Kyung;Suh, Young-Cheol;Jeon, Bu-Nam;Song, Chang-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • The 1st order level network of Korea was adjusted simultaneously in 1987. After that, the 1 st order level network of Korea was adjusted simultaneously by National Geographic Information Institute in 2006. The levelling data were acquired by digital level with invar staff from 2001 through 2006. The 1st order level network consists of 36 level lines. Among them, 34 level lines comprise 11 level loops. Among 36 level lines, 4 level lines have fore & back error larger than the regulations for the 1st order levelling of NGII, Korea. Also, the closing error of 3 loops of level network exceed the regulation for the 1st order levelling of NGII. The standard error of fore and back leveling between bench marks(${\eta}_1$) are distributed between 0.2 $mm/{\surd}km$ and 1.7 $mm/{\surd}km$. The standard error of loop closing(${\eta}_2$) is 2.0 $mm/{\surd}km$. This result means that the 1st order level network of Korea qualifies for the high precision leveling defined by International Geodetic Association in 1948. As the result of the 1st order level network adjustment, the reference standard error($\hat{{\sigma}_0}$) of the level network was 1.8 $mm/{\surd}km$, which is twice as good as that of the 1st adjustment of level networks in 1987.

지형오차와 치형수정을 고려한 헬리컬치차의 물림진동

  • 정태형;명재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.803-806
    • /
    • 1995
  • The vibration and nosic of gears is causeed by manufacting error,alignment error in assembly, and thr meshing stiffness of gears which changes periodically as the meshing of teeth process. On a pair of power transmission helical gears with profile error, the relation between the characteristics of gear vibration and the profile error type have been investigated by simulating the vibrational acceleration level and calculating the natural frequency. The results show that the profile error decrease the natural frequency by reducing the tool stiffness and that the concave error type increase the vibrationsl level. And this paper describes the effect of the tip relief on the vibrational acceleration level which a pair of helical gears with concave error generates.

  • PDF

A Look-Up Table Based Error Diffusion Algorithm for Dynamic False Contour Reduction of Plasma Display Panels

  • Lee, Ho-Seop;Kim, Choon-Woo
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.32-38
    • /
    • 2001
  • PDP(plasma display panel) represents the gray levels by the pulse number modulation technique that results in undesirable dynamic false contours on moving images. This paper proposes a LUT(Look-up table) based error diffusion algorithm for reduction of the dynamic false contours. A quantitative measure of the dynamic false contours is defined first. The measure of the dynamic false contours is calculated through simulation of every gray level combination of two consecutive frames. Based on the calculated measures, a modified gray level for a pair of gray levels of two consecutive frames is chosen to reduce the dynamic false contours. The chosen gray levels serve as contents of a gray level conversion LUT. Given a pair of gray levels of two consecutive frames, the gray level of current frame is modified based on the gray level conversion LUT. The new gray level is displayed on PDP. An error diffusion algorithm is, then, applied to compensate for the differences in the gray levels.

  • PDF

A Quantizer Reconstruction Level Control Method for Block Artifact Reduction in DCT Image Coding (양자화 재생레벨 조정을 통한 DCT 영상 코오딩에서의 블록화 현상 감소 방법)

  • 김종훈;황찬식;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.318-326
    • /
    • 1991
  • A Quantizer reconstruction level control method for block artifact reduction in DCT image coding is described. In our scheme, quantizer reconstruction level control is obtained by adding quantization level step size to the optimum quantization level in the direction of reducing the block artifact by minimizing the mean square error(MSE) and error difference(EDF) distribution in boundary without the other additional bits. In simulation results, although the performance in terms of signal to noise ratio is degraded by a little amount, mean square of error difference at block boundary and mean square error having relation block artifact is greatly reduced. Subjective image qualities are improved compared with other block artifact reduction method such as postprocessing by filtering and trasform coding by block overlapping. But the addition calculations of 1-dimensional DCT become to be more necessary to coding process for determining the reconstruction level.

  • PDF