• Title/Summary/Keyword: lee wave

Search Result 6,195, Processing Time 0.037 seconds

A Study of Matimum Run-up Heights of Periodic Waves (주기파의 최대 처오름높이에 관한 연구)

  • Jo, Yong-Sik;Lee, Bong-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.649-655
    • /
    • 1999
  • The maximum run-up heights of periodic waves are numerically investigated in this study. Incident waves are sinusoidal and enoidal waves. The maximum run-up height of enoidal wave approaches that of sinusoidal wave as the wave length decreases, while it approaches that of solitary wave as the wave length increases. If wave height is fixed, the maximum run up heights of enoidal waves are always greater than those of sinusoidal waves but smaller than those of solitary waves.

  • PDF

V-band CPW receiver chip set using GaAs PHEMT (GaAs PHEMT를 이용한 V-band CPW receiver chip set 설계 및 제작)

  • W. Y. Uhm;T. S. Kang;D. An;Lee, B. H.;Y. S. Chae;Park, H. M.;J. K. Rhee
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.69-73
    • /
    • 2002
  • We have designed and fabricated a low-cost, V-band CPW receiver chip set using GaAs PHEMT technology for the application of millimeter-wave wireless communication systems. Low noise amplifiers and down-converters were developed for this chip set. The fabricated low noise amplifier showed an S$\sub$21/ gain of 14.9 ㏈ at 60 ㎓ and a noise figure of 4.1 ㏈ at 52 ㎓. The down-converter exhibited a high conversion gain of 2 ㏈ at the low LO Power of 0 ㏈m. This work demonstrates that the GaAs PHEMT technology is a viable low-cost solution for V-band applications.

  • PDF

Characteristics of Coupled Acoustic Wave Propagation in Metal Pipe (금속 배관의 연성된 음향 전파 특성)

  • Kim, Ho-Wuk;Kim, Min-Soo;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.267-273
    • /
    • 2008
  • The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing a gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies.

A Study on the Impulse Wave Discharged from the Exit of a Right-Angle Pipe Bend (곡관출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Hur, S.C.;Kweon, Y.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.634-639
    • /
    • 2001
  • The current study addresses experimental and computational work of impulse wave discharged from the exit of two kinds of right-angle pipe bends, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.02 to 1.20 is employed to obtain the impulse wave propagating outside the exit of the pipe bends. A Schlieren optical system visualizes the impulse wave discharged from the exit of the pipe bends at an instant. The experimental data of the magnitude of the impulse wave and its propagating directivity are analyzed to characterize the impulse waves discharged from the exit of the pipe bends and compared with those discharged from a straight pipe. Computational results well predict the experimented dynamic behaviors of the impulse wave. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulse wave and its directivity toward to the pipe axis, compared with the straight pipe and right-angle smooth bend. It is believed that the right-angle miter bend pipe can playa role of a passive control against the impulse wave.

  • PDF

Numerical Simulations of an Unsteady Shock Wave Propagating into a Helmholtz Resonator (Helmholtz 공명기 내부를 전파하는 비정상 충격파의 수치해석)

  • Lee, Y.K.;Gweon, Y.H.;Shin, H.D.;Kim, H.D.;AOKI, T.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1643-1648
    • /
    • 2004
  • When a shock wave propagates into a Helmholtz resonator, very complicated wave phenomena are formed both inside and outside the resonator tube. Shock wave reflection, shock focusing phenomena and shock-vortex interactions cause strong pressure fluctuations inside the resonator, consequently leading to powerful sound emission. In the present study, the wave phenomena inside and outside the Helmholtz resonator are, in detail, investigated with a help of CFD. The Mach number of the incident shock wave is varied below 2.0 and several types of resonators are tested to investigate the influence of resonator geometry on the wave phenomena. A TVD scheme is employed to solve the axisymmetric, compressible, Euler equations. The results obtained show that the configuration of the Helmholtz resonator significantly affects the peak pressure of shock wave focusing, its location, the amplitude of the discharged wave and resonance frequency.

  • PDF

Development of net type wave absorber with air pumping (공기방울 첨가에 의한 부유식 소파장치 개발)

  • Pack, S.W.;Jung, J.H.;Chung, S.H.;Lee, J.H.;Kwon, S.H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.254-256
    • /
    • 2003
  • This paper presents the result if a study m the development of a net type wave absorber with air pumping. The authors already show the usefulness of net type wave absorber in the previous study. However, when it comes to the long waves, it was not easy to maintain the same efficiency with net type wave absorber only. The authors tried to overcome this difficulty by adding air bubbles to the water. The results show that combining the net type wave absorber and the air bubble is more efficient than single adoptation of the wave absorber or a net type wave absorber.

  • PDF

Wave Information Estimation and Revision Using Linear Regression Model (선형회귀모델을 이용한 파랑 정보 예측 및 보정)

  • Lim, Dong-hee;Kim, Jin-soo;Lee, Byung-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1377-1385
    • /
    • 2016
  • Conventional X-band marine radar has been used as one of the effective tools for collecting and retrieving ocean surface information parameters for three decades. Several wave information extracting algorithms have been designed in such a way that they can be utilized for efficiently estimating sea surface wave parameters such as current velocities, wave direction, significant wave heights in VTS (Vessel Traffic Service). However, their performances are still restricted. For the purpose of overcoming the performance limits, in this paper, first the conventional algorithms are analyzed and their performances are compared, and then a new control algorithm is proposed. Furthermore, we try to improve the estimation performances of typical wave parameters including wave directions and significant wave heights by introducing linear regression model in the process of computing wave information extraction. Through several simulations with the X-band radar images, it is shown that the proposed method is very effective in estimating the wave information compared to the real measured buoy data.

Field Observations of Wave-Induced Currents at Bonggil Beach (동해 봉길해안에서 해빈류의 현지 관측)

  • LEE YOUNG KWEON;YANG HAE YANG;PARK IL HEUM;LEE JONG SUP;KIM JONG KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.145-150
    • /
    • 2004
  • Using the DGPS of high precision take in a bouy, the wave-induced currents were observed by Lagrange method at Bonggile beach of the East Sea. At June, the northward wave-induced currents were dominated by the SSW waves. And the southward flaws were appeared at September and November. When 0.2-0.4m wave heights attacked the beach, the mean speed of the wave-induced currents was 0.15-0.3m/s at June and September, when the 1.0-1.6m wave heights incidented at November, that was about 0.3-0.6m/s. On the other hand, the observed results were compared with the simulated results which were solved by the 2-D model, WICU-DIVAST. It was showed the reasonable agreements.

  • PDF

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.

Heat Flow Analysis in the Newly Developed Wave Heat Sink by Computational Simulation (전산모사에 의한 웨이브 히트싱크의 열유동 특성 해석)

  • Lee In-Gyu;Lee Sang-Woong;Kang Kae-Myung;Chang Si-Young
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.870-875
    • /
    • 2004
  • Heat flow characteristics in the newly developed Wave Heat Sink were analyzed under natural and forced convections by Icepak program using the finite volume method. Temperature distribution and thermal resistance of Wave Heat Sink with/without air vent hole on the top of fin were compared with those of a commercial Al extruded heat sink(Intel Heat Sink). Under the natural convection, the maximum temperature was $45.1^{\circ}C$ in the air vent hole typed Wave Heat Sink, which was superior to that of Intel Heat Sink. The thermal resistance was $2.51^{\circ}C/W$ in the air vent hole typed Wave Heat Sink, and it changed to $2.65^{\circ}C/W\;and\;2.16^{\circ}C/W$ with changes of gravity direction and fin height, respectively. Under the forced convection, the maximum temperature became lower than that under the natural convection. In addition, the thermal resistance lowered in the air vent hole typed Wave Heat Sink with higher fin height and it decreased with increasing the air flux.