• Title/Summary/Keyword: least-squares finite element methods

Search Result 17, Processing Time 0.021 seconds

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

Node Activation Technique for Finite Element Model : Ⅰ. Theory (유한요소 모델의 절점 활성화 기법 : Ⅰ. 이론)

  • Jo, Jin Yeon;Kim, Do Nyeon;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.26-34
    • /
    • 2003
  • In this paper, a novel technique is proposed to arbitrarily activate the nodal points in finite element model through the meshless approximation methods such as MLS(moving least squares method), and theoretical investigations are carried out including the consistency and boundeness of numerical solution to prove the validity of the proposed method. By using the proposed node activation technique, one can activate and handle only the concerned nodes as unknown variables among the large number of nodal points in the finite element model. Therefore, the proposed technique has a great potential in design and reanalysis procedure.

ANALYSIS OF VELOCITY-FLUX FIRST-ORDER SYSTEM LEAST-SQUARES PRINCIPLES FOR THE OPTIMAL CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS

  • Choi, Young-Mi;Lee, Hyung-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • This paper develops a least-squares approach to the solution of the optimal control problem for the Navier-Stokes equations. We recast the optimality system as a first-order system by introducing velocity-flux variables and associated curl and trace equations. We show that a least-squares principle based on $L^2$ norms applied to this system yields optimal discretization error estimates in the $H^1$ norm in each variable.

A Comparative Study on Single Time Schemes Based on the FEM for the Analysis of Structural Transient Problems (구조물의 시간에 따른 거동 해석을 위한 유한요소법에 기초한 단일 스텝 시간 범주들의 비교연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.957-964
    • /
    • 2011
  • New time schemes based on the FEM were developed and their performances were tested with 2D wave equation. The least-squares and weighted residual methods are used to construct new time schemes based on traditional residual minimization method. To overcome some drawbacks that time schemes based on the least-squares and weighted residual methods have, ad-hoc method is considered to minimize residuals multiplied by others residuals as a new approach. And variational method is used to get necessary conditions of ad-hoc minimization. A-stability was chosen to check the stability of newly developed time schemes. Specific values of new time schemes are presented along with their numerical solutions which were compared with analytic solution.

Approximate Optimization Using Moving Least Squares Response Surface Methods: Application to FPSO Riser Support Design

  • Song, Chang-Yong;Lee, Jong-Soo;Choung, Joon-Mo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.20-33
    • /
    • 2010
  • The paper deals with strength design of a riser support installed on floating production storage and offloading (FPSO) vessel under various loading conditions - operation, extreme, damaged, one line failure case (OLFC) and installation. The design problem is formulated such that thickness sizing variables are determined by minimizing the weight of a riser support structure subject to stresses constraints. The initial design model is generated based on an actual FPSO riser support specification. The finite element analysis (FEA) is conducted using MSC/NASTRAN, and optimal solutions are obtained via moving least squares method (MLSM) in the context of response surface based approximate optimization. For the meta-modeling of inequality constraint functions of stresses, a constraint-feasible moving least squares method (CF-MLSM) is used in the present study. The method of CF-MLSM, compared to a conventional MLSM, has been shown to ensure the constraint feasibility in a case where the approximate optimization process is employed. The optimization results present improved design performances under various riser operating conditions.

An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain (임의의 절점 추가에 의한 개선 유한요소법)

  • Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1626-1633
    • /
    • 2006
  • In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.

A Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Lee, Sang-Ju;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.495-500
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity. Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

  • PDF

Wave-Front Error Reconstruction Algorithm Using Moving Least-Squares Approximation (이동 최소제곱 근사법을 이용한 파면오차 계산 알고리즘)

  • Yeon, Jeoung-Heum;Kang, Gum-Sil;Youn, Heong-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.359-365
    • /
    • 2006
  • Wave-front error(WFE) is the main parameter that determines the optical performance of the opto-mechanical system. In the development of opto-mechanics, WFE due to the main loading conditions are set to the important specifications. The deformation of the optical surface can be exactly calculated thanks to the evolution of numerical methods such as the finite element method(FEM). To calculate WFE from the deformation results of FEM, another approximation of the optical surface deformation is required. It needs to construct additional grid or element mesh. To construct additional mesh is troublesomeand leads to transformation error. In this work, the moving least-squares approximation is used to reconstruct wave front error It has the advantage of accurate approximation with only nodal data. There is no need to construct additional mesh for approximation. The proposed method is applied to the examples of GOCI scan mirror in various loading conditions. The validity is demonstrated through examples.

Comparison of the Stress Concentration Factors for GFRP Plate having Centered Circular Hole by Three Resource-Conserving Methods

  • Gao, Zhongchen;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2016
  • Fiber reinforced plastic (FRP) composites have drawn increasing attentions worldwide for decades due to its outstanding properties. Stress concentration factor (SCF) as an essential parameter in materials science are critically considered in structure design and application, strength assessment and failure prediction. However, investigation of stress concentration in FRP composites has been rarely reported so far. In this study, three resource-conserving analyses (Isotropic analysis, Orthotropic analysis and Finite element analysis) were introduced to plot the $K_T^A-d/W$ curve for E-glass/epoxy composite plate with the geometrical defect of circular hole placed centrally. The plates were loaded to uniaxial direction for simplification. Finite element analysis (FEA) was carried out via ACP (ANSYS composite prepost module). Based on the least squares method, a simple expression of fitting equation could be given based on the simulated results of a set of discrete points. Finally, all three achievable solutions were presented graphically for explicit comparison. In addition, the investigation into customized efficient SCFs has also been carried out for further reference.