References
- J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order system, Math. Comp. 66 (1997), 935-955 https://doi.org/10.1090/S0025-5718-97-00848-X
- J. H. Bramble and T. Sun, A negative-norm least squares method for Reissner-Mindlin plates, Math. Comp. 67 (1998), 901-916 https://doi.org/10.1090/S0025-5718-98-00972-7
- Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal. 31 (1994), 1785-1799 https://doi.org/10.1137/0731091
- Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part II, SIAM J. Numer. Anal. 34 (1997), 425-454 https://doi.org/10.1137/S0036142994266066
- Z. Cai and B. C. Shin, The discrete first-order system least-squares: the secondorder elliptic boundary value problem, SIAM J. Numer. Anal. 40 (2002), 307-318 https://doi.org/10.1137/S0036142900381886
- C. L. Chang, Finite element approximation for gmd-div type systems in the plane, SIAM J. Numer. Anal. 29 (1992), 452-461 https://doi.org/10.1137/0729027
- S. D. Kim and B. C. Shin, H-1 least-squares methods for the velocity-pressurestress formulation of Stokes equations, Appl. Numer. Math. 40 (2002), no. 4, 451-465 https://doi.org/10.1016/S0168-9274(01)00095-2
- A. 1. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least squares mixed finite elements for second order elliptic problems, SIAM J. Numer. Anal. 31 (1994), 1368-1377 https://doi.org/10.1137/0731071
- A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, Springer-Verlag, Berlin Heidelberg, 1994