Fernandez-Diaz, Oscar F.;Navia, Alfonso;Berner, Juan Enrique;Ahmad, Fateh;Guerra, Claudio;Ragbir, Maniram
Archives of Plastic Surgery
/
v.49
no.5
/
pp.668-675
/
2022
Background Educational resources on the internet are extensively used to obtainmedical information. YouTube is the most accessed video platform containing information to enhance the learning experience of medical professionals. This study systematically analyzed the educational value of microsurgery-related videos on this platform. Methods A systematic review was conducted on YouTube from April 18 to May 18, 2020, using the following terms: "microsurgery," "microsurgical," "microsurgical anastomosis," "free flap," and "free tissue transfer." The search was limited to the first 100 videos, and two independent reviewers screened for eligible entries and analyzed their educational value using validated scales, including a modified version of the DISCERN score (M-DISCERN), Journal of the American Medical Association (JAMAS) benchmark criteria, and the Global Quality Score (GQS). Evaluation of video popularity was also assessed with the video power index (VPI). Results Of 356 retrieved videos, 75 (21%) were considered eligible. The educational quality of videos was highly variable, and the mean global scores for the M-DISCERN, JAMAS, and GQS for our sample were consistent with medium to low quality. Conclusions A limited number of videos on YouTube for microsurgical education have high-educational quality. The majority scored low on the utilized criteria. Peer-reviewed resources seem to be a more reliable resource. Although the potential of YouTube should not be disregarded, videos should be carefully appraised before being usedas an educational resource.
Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.195-207
/
2022
COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.
Real estate and artworks were considered challenging investment targets for individual investors because of their relatively high average transaction price despite their long investment history. Recently, the so-called fractional investment, generally known as investing in a share of the ownership right for real-life assets, etc., and most investors perceive that they actually own a piece (fraction) of the ownership right through their investments, is gaining popularity. Founded in 2016, Musicow started the first service that allows users to invest in copyright fees related to music distribution. Using the LSTM algorithm, one of the deep learning algorithms, this research predict the price of right to participate in copyright fees traded in Musicow. In addition to variables related to claims such as transfer price, transaction volume of claims, and copyright fees, comprehensive indicators indicating the market conditions for music copyright fees participation, exchange rates reflecting economic conditions, KTB interest rates, and Korea Composite Stock Index were also used as variables. As a result, it was confirmed that the LSTM algorithm accurately predicts the transaction price even in the case of fractional investment which has a relatively low transaction volume.
In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.
Junho Kim;Jinhong Kim;Byeongjun Kang;Jaewon Choi;Jihoon Kim;Dongwoo Kang
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.187-190
/
2022
본 논문은 메타버스 등 인공지능 연계 증강/가상현실 부동 중계 플랫폼에서 부동산 영상 기반 매물 소개 시스템 구축에서 사생활 및 개인정보가 영상에 담기게 될 수 있는 위험이 존재하기에 부동산 영상 내의 개인정보 및 민감 정보를 인공지능 기술을 기반으로 검출하여 삭제해주고 복원해주는 인공지능 기술 연구개발을 목표로 하였다. 한국형 부동산 내 민감 object 를 정의하고, 최신 인공지능 딥러닝 기술 기반 민감 object detection 알고리즘을 연구 개발하며, 영상에서 삭제된 부분은 인공지능 기술을 기반으로 물체가 없는 실제 공간영상으로 복원해주는 영상복원 기술도 연구 개발하였다. 한국형 부동산 환경 (영상 촬영 조도, 디스플레이 스타일, 주변 가구 배치 등)에 맞는 인공지능 모델 구축을 위하여, 자체적으로 한국 영상 database 구축 및 Transfer learning for target domain adaptation 을 진행하였다. 제안된 알고리즘은 일반적인 환경에서 98%의 정확도와 challenge 환경에서 (occlusion 빛 반사, 저조도 등) 81%의 정확도를 보였다. 본 기술은 Proptech 분야에서 주목받고 있는 메타버스 기반 온라인 중계 서비스 기술을 활성화하기 위하여 기획되었으며, 특히 메타버스 부동산 중계 플랫폼의 활성화를 위하여 사생활 보호 측면에서 필요한 중요 기술을 인공지능 기술을 활용하여 연구 개발하였다.
A meatadata has become an essential element in order to recommend video content to users. However, it is passively generated by video content providers. In the paper, a method for automatically generating metadata was studied in the existing manual metadata input method. In addition to the method of extracting emotion tags in the previous study, a study was conducted on a method for automatically generating metadata for genre and country of production through movie audio. The genre was extracted from the audio spectrogram using the ResNet34 artificial neural network model, a transfer learning model, and the language of the speaker in the movie was detected through speech recognition. Through this, it was possible to confirm the possibility of automatically generating metadata through artificial intelligence.
Purpose: The objective of this scoping review was to investigate the applicability and performance of various convolutional neural network (CNN) models in tooth numbering on panoramic radiographs, achieved through classification, detection, and segmentation tasks. Materials and Methods: An online search was performed of the PubMed, Science Direct, and Scopus databases. Based on the selection process, 12 studies were included in this review. Results: Eleven studies utilized a CNN model for detection tasks, 5 for classification tasks, and 3 for segmentation tasks in the context of tooth numbering on panoramic radiographs. Most of these studies revealed high performance of various CNN models in automating tooth numbering. However, several studies also highlighted limitations of CNNs, such as the presence of false positives and false negatives in identifying decayed teeth, teeth with crown prosthetics, teeth adjacent to edentulous areas, dental implants, root remnants, wisdom teeth, and root canal-treated teeth. These limitations can be overcome by ensuring both the quality and quantity of datasets, as well as optimizing the CNN architecture. Conclusion: CNNs have demonstrated high performance in automated tooth numbering on panoramic radiographs. Future development of CNN-based models for this purpose should also consider different stages of dentition, such as the primary and mixed dentition stages, as well as the presence of various tooth conditions. Ultimately, an optimized CNN architecture can serve as the foundation for an automated tooth numbering system and for further artificial intelligence research on panoramic radiographs for a variety of purposes.
There is currently a burgeoning demand for image synthesis from photos and videos using deep learning models. Existing video synthesis models solely extract motion information from the provided video to generate animation effects on photos. However, these synthesis models encounter challenges in achieving accurate lip synchronization with the audio and maintaining the image quality of the synthesized output. To tackle these issues, this paper introduces a novel framework based on an image animation approach. Within this framework, upon receiving a photo, a video, and audio input, it produces an output that not only retains the unique characteristics of the individuals in the photo but also synchronizes their movements with the provided video, achieving lip synchronization with the audio. Furthermore, a super-resolution model is employed to enhance the quality and resolution of the synthesized output.
Journal of the Korea Society of Computer and Information
/
v.29
no.6
/
pp.1-12
/
2024
Deep learning with faster and more accurate results requires large amounts of storage space and large computations. Accordingly, many studies are using hardware accelerators for quick and accurate calculations. However, the performance bottleneck is due to data movement between the hardware accelerators and the CPU. In this paper, we propose a data prefetch strategy that can efficiently reduce such operational bottlenecks. The core idea of the data prefetch strategy is to predict the data needed for the next task and upload it to local memory while the hardware accelerator (Matrix Multiplication Unit, MMU) performs a task. This strategy can be enhanced by using a dual buffer to perform read and write operations simultaneously. This reduces latency and execution time of data transfer. Through simulations, we demonstrate a 24% improvement in the performance of hardware accelerators by maximizing parallel processing with dual buffers and bottlenecks between memories with data prefetch.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.2
/
pp.311-326
/
2024
The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.