This paper was designed for the purpose of helping the functional comprehension on the concept of a circumcenter and an incenter of triangle and offering the help for teaching-learning process on their definitions. We analysed the characteristic of the definition on a circumcenter and an incenter of triangle and studied the context, mean and purpose on the definition. The definition focusing on the construction is the definition stressed on the consistency of the concept through the fact that it is possible to draw figure of the concept. And this definition is the thing that consider the extend of the concept from triangle to polygon. Meanwhile this definition can be confused because the concept is not connected with the terminology. The definition focusing on the meaning is easy to memorize the concept because the concept is connected with the terminology but is difficult to search for the concept truth. And this definition is the thing that has the grounds on the occurrence but is taught in a made-knowledge. The definition focusing on both the construction and meaning is the definition that the starting point is vague in the logical proof process. We hope that the results are used to improve the understanding the concept of a circumcenter and an incenter of triangle in the field of mathematical education.
The purpose of this research was to confirm one of constructivists' assumptions that even children 조o are with low reasoning ability can make reflective abstracting ability and cognitive structures by this ability can make generation ability of new knowledge by themselves. To investigate the assumption, learner-centered instruction were implemented to 2nd grade classroom located in Suseong Gu, DaeGu City and with lesson plans which initially were developed by Burns and corrected by the researchers. Recordings videoed using 2 video cameras, observations, instructions, children's activity worksheets, instruction journals were analyzed using multiple tests for qualitative analysis. Some conclusions are drawn from the results. First, even children with low reasoning ability can construct mathematical knowledge on multiplication in their own. ways, Thus, teachers should not compel them to learn a learning lesson's goals which is demanded in traditional instruction, with having belief they have reasoning ability. Second, teachers need to have the perspectives of respects out of each child in their classroom and provide some materials which can provoke children's cognitive conflict and promote thinking with the recognition of effectiveness of learner-centered instruction. Third, students try to develop their ability of reflective and therefore establish cognitive structures such as webs, not isolated and fragmental ones.
Jun, Young Bae;Roh, Eun Hwan;Kim, Dae Eui;Kang, Jeong Gi
Journal of the Korean School Mathematics Society
/
v.16
no.2
/
pp.383-407
/
2013
As an alternative of making students active and independent under the passive learning conditions in school math classes, many researchers have paid much attention to problem posing and done a lot of research on it. Above all, Brown and Walter proposed What I f Not strategy as a means of problem posing. In this strategy, during the process of posing problems, the transformation of their attributes is inevitably made, and so after problem posing, the process is finished by explaining the problem. But only the simple transformation of attributes could pose wrong problems. It suggests that it is very important to recognize the relationship which leads to organic connection between attributes in order to pose the right problem. However, many other studies of problem posing haven't focused on this fact. Thus, this study tried to design a model of problem posing to help recognize inherent knowledge in the problem and then pose the right problem by adding an activity of meaning analysis. We concretely showed a model of problem posing emphasizing the analysis of meaning by means of an example, thereby examining the meaning of the model. This study expects students to have the chance to understand the true meaning of problem posing and to be active learners after all.
This study intended on analyzing the error patterns of mathematic problem posing sentences by the 100 elementary pre-teachers and discussing about the solutions. The results showed that the problem posing sentences have five error patterns: phonological error patterns, word error patterns, sentence error patterns, meaning error patterns, and notation error patterns. Divided into fourteen specific error patterns, they are as in the following. 1) Phonological error patterns are consisted of the 'ㄹ' addition error pattern and the abbreviated word error pattern. 2) Words error patterns are divided with the inappropriate usage of word error pattern and the inadequate abbreviation error pattern, which are formulized four subgroups such as the case maker, ending of the word, inappropriate usage of word, and inadequate abbreviation of article or word error pattern in detail. 3) Sentence error patterns are assumed four kinds of forms: the reference, ellipsis of sentence component, word order, and incomplete sentence error pattern. 4) Meaning error patterns are composed the logical contradiction and the ambiguous meaning. 5) Notation error patterns are formed four patterns as the spacing, punctuation, orthography of Hangul, and spelling rules of foreign words in Korean. Furthermore, the solutions for these error patterns were discussed: First, it has to be perceived the differences between spoken and written language. Second, it has to be rejected the spoken expressions in written contexts. Third, it should be focused on the learning of the basic sentence patterns during the class. Forth, it is suggested that the word meaning should have the logical development perception based on what it means. Finally, it is proposed that the system of spelling of Korean has to be learned. In addition to these suggestions, a new understanding is necessary regarding writing education for college students.
Descriptive problems can be used to grow student's ability of thinking logically and creatively, because it shows if the students had a reasonable way of thinking. Rate of descriptive problems is increasing in middle and high school exams. However, students in middle and high schools are generally used to answering multiple-choice or short-answer questions rather than describing the solving process. The purpose of this paper is to gain a theoretic ground to increase the rate of descriptive problems. In this study, students were to solve some multiple-choice problems, and after a few weeks, to solve the problems of same contents in the form of descriptive problems which requires the students to write the solving process. The difference of the scores were measured for each problems to each students, and students were asked what they think the reason for rise or fall of the score is. The result is as follows: First, average scores of 7 of 8 problems used in this study had fallen when it was in descriptive form, and for 5 of them in the rate of 11.2%~16.8%. Second, the main reason of falling is that the students have actual troubles of describing the solving process. Third, in the case of rising, the main reason was that partial scores were given in the descriptive problems. Last, there seems a possibility gender difference in the reason of falling. From these results, followings are suggested to advance the learning, teaching and evaluation in mathematics education: First, it has to be emphasized enough to describe the solving process when solving a problem. Second, increasing the rate of descriptive problems can be supported as a way to advance the evaluation. Third, descriptive problems have to be easier to solve than multiple-choice ones and it is convenient for the students to describe the solving process. Last, multiple-choice problems have to be carefully reviewed that the possibility of students' choosing incorrect answer with a small mistake is minimal.
The purpose of this study was to discover differences between mathematically gifted students (MGS) and non-gifted students (NGS) when making probability judgments. For this purpose, the following research questions were selected: 1. How do MGS differ from NGS when making probability judgments(answer correctness, answer confidence)? 2. When tackling probability problems, what effect do differences in probability judgment factors have? To solve these research questions, this study employed a survey and interview type investigation. A probability test program was developed to investigate the first research question, and the second research question was addressed by interviews regarding the Program. Analysis of collected data revealed the following results. First, both MGS and NGS justified their answers using six probability judgment factors: mathematical knowledge, use of logical reasoning, experience, phenomenon of chance, intuition, and problem understanding ability. Second, MGS produced more correct answers than NGS, and MGS also had higher confidence that answers were right. Third, in case of MGS, mathematical knowledge and logical reasoning usage were the main factors of probability judgment, but the main factors for NGS were use of logical reasoning, phenomenon of chance and intuition. From findings the following conclusions were obtained. First, MGS employ different factors from NGS when making probability judgments. This suggests that MGS may be more intellectual than NGS, because MGS could easily adopt probability subject matter, something not learnt until later in school, into their mathematical schemata. Second, probability learning could be taught earlier than the current elementary curriculum requires. Lastly, NGS need reassurance from educators that they can understand and accumulate mathematical reasoning.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.1
/
pp.81-102
/
2010
The purpose of this study was to analyze the content and design of the seven math camp programs for students of the education centers for the elementary gifted students. The analysis focused on the goals, content, and evaluations utilized in the math camp programs. The results of the study were as follows. First, there was no big difference between the goals set for each camp, and they mainly focused on the goals in affective domain. Second, the content of math camp programs was focused on enrichment rather than acceleration. Most of the programs were focused on geometry, whereas fewer programs were focused on measurement, probability and statistics. Based on the Analysis, we found that only nine out of 27 programs applied level-wised or individual exercise programs. Third, all centers for the mathematically gifted carried out evaluations of their math camp programs. However, a specific evaluation plan was not established for the math camp program plans. We suggested the direction of math camp programs as follows. First, the goals should reflect on the intended outcomes of the math camp programs. Also, the goals of math camp programs need to be distinctive from general education goals. Second, the programs should contain harmonious contents with enrichment and acceleration and must include various reactions and task commitment. The math camp programs need to include references and an appropriate information for the gifted students to encourage self-directed learning. Third, a more specific evaluation plan for math camp programs needs to be developed for effective education for the gifted students.
This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.
The purpose of this study was to analyze the influence of mathematical tasks on mathematical communication. Mathematical tasks were classified into four different levels according to cognitive demands, such as memorization, procedure, concept, and exploration. For this study, 24 students were selected from the 5th grade of an elementary school located in Seoul. They were randomly assigned into six groups to control the effects of extraneous variables on the main study. Mathematical tasks for this study were developed on the basis of cognitive demands and then two different tasks were randomly assigned to each group. Before the experiment began, students were trained for effective communication for two months. All the procedures of students' learning were videotaped and transcripted. Both quantitative and qualitative methods were applied to analyze the data. The findings of this study point out that the levels of mathematical tasks were positively correlated to students' participation in mathematical communication, meaning that tasks with higher cognitive demands tend to promote students' active participation in communication with inquiry-based questions. Secondly, the result of this study indicated that the level of students' mathematical justification was influenced by mathematical tasks. That is, the forms of justification changed toward mathematical logic from authorities such as textbooks or teachers according to the levels of tasks. Thirdly, it found out that tasks with higher cognitive demands promoted various negotiation processes. The results of this study implies that cognitively complex tasks should be offered in the classroom to promote students' active mathematical communication, various mathematical tasks and the diverse teaching models should be developed, and teacher education should be enhanced to improve teachers' awareness of mathematical tasks.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.3
/
pp.937-957
/
2010
The purpose of this study is to discover the features of symbol sense. This study tries to sum up the meaning and elements of symbol sense and the measures to improve them through documents. Also based on this, it analyzes the learning conditions about symbol sense for 6th grade mathematically able students and suggests the method that activates symbol sense in the math of elementary schools. Considering various studies on symbol sense, symbol sense means the exact knowledge and essential understanding in a comprehensive way. Symbol sense is an intuition about symbols that grasps the meaning of symbols, understands the situation of question, and realizes the usefulness of symbols in resolving a process. Considering all other scholars' opinions, this study sums up 5 elements of the symbol sense. (The recognition of needs to introduce symbol, ability to read the meaning of symbols, choice of suitable symbols according to the context, pattern guess through visualization, recognize the role of symbols in other context) This study draws the following conclusions after applying the symbol questionnaires targeting 6th grade mathematically able students : First, although they are math talents, there are some differences in terms of the symbol sense level. Second, 5 elements of the symbol sense are not completely separated. They are rather closely related in terms of mainly the symbol understanding, thereby several elements are combined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.