• 제목/요약/키워드: learning cycle

검색결과 312건 처리시간 0.032초

공정개선을 위한 인공신경망의 실험적 적용에 관한 연구 (A Study on the Experimental Application of the Artificial Neural Network for the Process Improvement)

  • 한우철
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.174-183
    • /
    • 2002
  • 본 연구에서는 자동화된 데이터의 수집과 자동화된 제조환경하에서 수행될 수 있는 공정관리도의 패턴양상에 대하여 인공지능의 대표적인 기법인 인공신경망을 이용하여 각 패턴의 인식과 이의 검증, 그리고 이상패턴의 발생상황을 모니터링할 수 있는 지능형 공정관리 시스템을 개발하는데 중점을 두었다 개발된 패턴인식시스템을 이용하여 공정의 상태를 관리하는 작업자의 부담을 한층 덜어줄 수 있으며 작업자는 공정에 이상패턴이 발생하는 경우에 패턴인식시스템을 통하여 공정상태에 대한 정보를 전달받을 수 있어서 지속적인 품질개선활동을 수행할 수 있게 된다.

  • PDF

운전자 안정성 향상을 위한 Generative Adversarial Network 기반의 야간 도로 영상 변환 시스템 (Night-to-Day Road Image Translation with Generative Adversarial Network for Driver Safety Enhancement)

  • 안남현;강석주
    • 방송공학회논문지
    • /
    • 제23권6호
    • /
    • pp.760-767
    • /
    • 2018
  • 첨단 운전자 지원 시스템(ADAS)은 차량 기술 분야에서 활발한 연구가 이루어지고 있는 기술이다. ADAS 기술은 직접적으로 차량을 제어하는 기술과 간접적으로 운전자에게 편의를 제공하는 기술로 나뉜다. 본 논문에서는 야간 도로 영상을 보정하여 운전자에게 시각적 편의를 제공하는 시스템을 제안한다. 제안하는 시스템은 전방 블랙박스 카메라로부터 촬영된 도로 영상을 입력받는다. 입력된 영상은 가로 축을 따라 세 부분으로 분할된 뒤 일괄적으로 이미지 변환 모듈을 통해 각각 낮 영상으로 변환된다. 변환된 영상은 다시 결합된 뒤 운전자에게 제공되어 시각적 편의를 제공한다. 본 논문의 실험 결과를 통해 제안한 시스템이 기존의 밝기 변환 알고리즘과 비교하여 우수한 성능을 보임을 입증한다.

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.

딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법 (A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network)

  • 아사드 칸;고영휘;최우진
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

  • Killinger, Dimitris;Phongikaroon, Supathorn
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.209-229
    • /
    • 2022
  • This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

양방향 LSTM기반 시계열 특허 동향 예측 연구 (A patent application filing forecasting method based on the bidirectional LSTM)

  • 최승완;김광수;곽수영
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.545-552
    • /
    • 2022
  • 특정 분야의 특허출원수는 기술의 수명주기 및 산업의 활성화 정도와 밀접한 관계를 가지고 있다. 따라서 사전에 사업을 준비하는 기업들과 미래 유망 기술을 초기 단계에서 선발하여 투자하고자 하는 정부 기관들은 미래의 특허 출원수 예측에 대해 큰 관심을 가지고 있다. 본 논문에서는 시계열 데이터에 적합한 RNN의 기법 중 하나인 양방향 LSTM 기법을 이용하여 기존 예측 방법들보다 정확도를 높이는 방법을 제안한다. 5개 분야의 대한민국 특허 출원 데이터에 대해서 제안된 방법은 기존에 사용되던 확산 모델 중 하나인 Bass 모델과 비교하여 평균 절대 백분율 오차(MAPE)의 값이 약 16퍼센트 향상된 결과를 보여준다.

지발형 오르니틴 트랜스카바미라제 결핍증 환자들의 신경학적 예후 (Neurological Outcome of Patients with Late-onset Ornithine Transcarbamylase Deficiency)

  • 장경미;황수경
    • 대한유전성대사질환학회지
    • /
    • 제22권1호
    • /
    • pp.15-20
    • /
    • 2022
  • The most common urea cycle disorder is ornithine transcarbamylase deficiency. More than 80 percent of patients with symptomatic ornithine transcarbamylase deficiency are late-onset, which can present various phenotypes from infancy to adulthood. With no regards to the severity of the disease, characteristic fluctuating courses due to hyperammonemia may develop unexpectedly, and can be precipitated by various metabolic stressors. Late-onset ornithine transcarbamylase deficiency is not merely related to a type of genetic variation, but also to the complex relationship between genetic and environmental factors that result in hyperammonemia; therefore, it is difficult to predict the prevalence of neurological symptoms in late-onset ornithine transcarbamylase deficiency. Most common acute neurological manifestations include psychological changes, seizures, cerebral edema, and death; subacute neurological manifestations include developmental delays, learning disabilities, intellectual disabilities, attention-deficit/hyperactivity disorder, executive function deficits, and emotional and behavioral problems. This review aims to increase awareness of late-onset ornithine transcarbamylase deficiency, allowing for an efficient use of biochemical and genetic tests available for diagnosis, ultimately leading to earlier treatment of patients.

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Kim, Minseop;Lee, Seungrae;Yoon, Seok;Jeon, Min-Kyung
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.269-278
    • /
    • 2022
  • The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF

A Study on a Method for Detecting Leak Holes in Respirators Using IoT Sensors

  • Woochang Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.378-385
    • /
    • 2023
  • The importance of wearing respiratory protective equipment has been highlighted even more during the COVID-19 pandemic. Even if the suitability of respiratory protection has been confirmed through testing in a laboratory environment, there remains the potential for leakage points in the respirators due to improper application by the wearer, damage to the equipment, or sudden movements in real working conditions. In this paper, we propose a method to detect the occurrence of leak holes by measuring the pressure changes inside the mask according to the wearer's breathing activity by attaching an IoT sensor to a full-face respirator. We designed 9 experimental scenarios by adjusting the degree of leak holes of the respirator and the breathing cycle time, and acquired respiratory data for the wearer of the respirator accordingly. Additionally, we analyzed the respiratory data to identify the duration and pressure change range for each breath, utilizing this data to train a neural network model for detecting leak holes in the respirator. The experimental results applying the developed neural network model showed a sensitivity of 100%, specificity of 94.29%, and accuracy of 97.53%. We conclude that the effective detection of leak holes can be achieved by incorporating affordable, small-sized IoT sensors into respiratory protective equipment.