DOI QR코드

DOI QR Code

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Received : 2022.05.30
  • Accepted : 2022.07.06
  • Published : 2022.09.30

Abstract

The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

Keywords

Acknowledgement

This work was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (NRF) (2021M2E3A2041351) and the National Research Foundation of Korea Basic Research Project (2020R1A2B5B01002067) funded by the Korea government (Ministry of Science and ICT, MSIT).

References

  1. B. Jeon, S. Choi, S. Lee, and S. Jeon, "A Conceptual Study for Deep Borehole Disposal of High Level Radioactive Waste in Korea", Tunn. Undergr. Space, 29(2), 75-88 (2019).
  2. S. Yoon, J.S. Jeon, S. Chang, D.H. Lee, S.R. Lee, and G.Y. Kim, "Characteristics of Water Suction for a Korean Compacted Bentonite", Nucl. Technol., 206(3), 514-525 (2020). https://doi.org/10.1080/00295450.2019.1632093
  3. W.J. Cho, J.O. Lee, and S. Kwon, "Analysis of Thermo- hydro-mechanical Process in the Engineered Barrier System of a High-level Waste Repository", Nucl. Eng. Des., 240(6), 1688-1698 (2010). https://doi.org/10.1016/j.nucengdes.2010.02.027
  4. P. Sellin and O.X. Leupin, "The Use of Clay as an Engineered Barrier in Radioactive-Waste Management-A Review", Clays Clay Miner., 61(6), 477-498 (2013). https://doi.org/10.1346/CCMN.2013.0610601
  5. M. Kim, S. Lee, E. Cheon, M. Kim, and S. Yoon, "Thermochemical Changes on Swelling Pressure of Compacted Bentonite", Ann. Nucl. Energy, 151, 107882 (2021). https://doi.org/10.1016/j.anucene.2020.107882
  6. E.E. Alonso, A. Gens, and A. Josa, "A Constitutive Model for Partially Saturated Soils", Geotechnique, 40(3), 405-430 (1990). https://doi.org/10.1680/geot.1990.40.3.405
  7. E.E. Alonso, J. Vaunat, and A. Gens, "Modelling the Mechanical Behaviour of Expansive Clays", Eng. Geol., 54(1-2), 173-183 (1999). https://doi.org/10.1016/S0013-7952(99)00079-4
  8. C. Hoffmann, E.E. Alonso, and E. Romero, "Hydro-mechanical Behaviour of Bentonite Pellet Mixtures", Phys. Chem. Earth, Parts A/B/C, 32(8-14), 832-849 (2007). https://doi.org/10.1016/j.pce.2006.04.037
  9. Q. Wang, A.M. Tang, Y.J. Cui, J.D. Barnichon, and W.M. Ye, "Investigation of the Hydro-mechanical Behaviour of Compacted Bentonite/Sand Mixture Based on the BExM Model", Comput. Geotech., 54, 46-52 (2013). https://doi.org/10.1016/j.compgeo.2013.05.011
  10. G.H. Go, S.R. Lee, and Y.S. Kim, "A Reliable Model to Predict Thermal Conductivity of Unsaturated Weathered Granite Soils", Int. Commun. Heat Mass Transf., 74, 82-90 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.01.009
  11. L. Nguyen-Tuan, T. Lahmer, M. Datcheva, E. Stoimenova, and T. Schanz, "A Novel Parameter Identification Approach for Buffer Elements Involving Complex Coupled Thermo-hydro-mechanical Analyses", Comput. Geotech., 76, 23-32 (2016). https://doi.org/10.1016/j.compgeo.2016.02.005
  12. Z.Y. Yin, Y.F. Jin, J.S. Shen, and P.Y. Hicher, "Optimization Techniques for Identifying Soil Parameters in Geotechnical Engineering: Comparative Study and Enhancement", Int. J. Numer. Anal. Methods Geomech., 42(1), 70-94 (2018). https://doi.org/10.1002/nag.2714
  13. K.T. Fang, C.X. Ma, and P. Winker, "Centered L2-discrepancy of Random Sampling and Latin Hypercube Design, and Construction of Uniform Designs", Math. Comput., 71(237), 275-296 (2002).
  14. K.S. Chun, W.J. Cho, J.O. Lee, S.S. Kim, and M.J. Kang. High-level Waste Disposal Technology Development: Engineered Barrier Development, Korea Atomic Energy Research Institute Report, KAERI/ RR-1897/98 (1998).
  15. M.V. Villar, R. Gomez-Espina, and A. Lloret, "Experimental Investigation Into Temperature Effect on Hydro-mechanical Behaviours of Bentonite", J. Rock Mech. Geotech. Eng., 2(1), 71-78 (2010).
  16. M.S. Kim, J.S. Jeon, M.J. Kim, J. Lee, and S.R. Lee, "A Multi-Objective Optimization of Initial Conditions in a Radioactive Waste Repository by Numerical Thermo -hydro-mechanical Modeling", Comput. Geotech., 114, 103106 (2019). https://doi.org/10.1016/j.compgeo.2019.103106
  17. S. Whitaker, "Flow in Porous Media I: A Theoretical Derivation of Darcy's Law", Transp. Porous Media, 1(1), 3-25 (1986). https://doi.org/10.1007/BF01036523
  18. H.C. Berg, Random Walks in Biology, Expanded edi., Princeton University Press, New Jersey (1993).
  19. K.H. Roscoe and J.B. Burland, "On the Generalized Stress-Strain Behaviour of Wet Clay", Engineering Plasticity, Cambridge University Press, Cambridge, 535-609 (1968).
  20. S. Park, S. Yoon, S. Kwon, and G.Y. Kim, "A Prediction of Saturated Hydraulic Conductivity for ComPacted Bentonite Buffer in a High-level Radioactive Waste Disposal System", J. Nucl. Fuel Cycle Waste Technol., 18(2), 133-141 (2020). https://doi.org/10.7733/jnfcwt.2020.18.2.133
  21. M. Kim, S. Lee, T.H. Kwon, S.K. Choi, and J.S. Jeon, "Sensitivity Analysis of Influencing Parameters on Slittype Barrier Performance Against Debris Flow Using 3D-based Numerical Approach", Int. J. Sediment Res., 36(1), 50-62 (2021). https://doi.org/10.1016/j.ijsrc.2020.04.005
  22. I.M. Sobol, "Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates", Math. Comput. Simul., 55(1-3), 271-280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6
  23. L. Xu, Y. Jiang, and R. Qiu, "Parametric Study and Global Sensitivity Analysis for Co-pyrolysis of Rape Straw and Waste Tire Via Variance-based Decomposition", Bioresour. Technol., 247, 545-552 (2018). https://doi.org/10.1016/j.biortech.2017.09.141
  24. H.I. Park and S.R. Lee, "Evaluation of the Compression Index of Soils Using an Artificial Neural Network", Comput. Geotech., 38(4), 472-481 (2011). https://doi.org/10.1016/j.compgeo.2011.02.011
  25. D.H. Lee, E. Cheon, H.H. Lim, S.K. Choi, Y.T. Kim, and S.R. Lee, "An Artificial Neural Network Model to Predict Debris-flow Volumes Caused by Extreme Rainfall in the Central Region of South Korea", Eng. Geol., 281, 105979 (2021). https://doi.org/10.1016/j.enggeo.2020.105979
  26. B. Pradhan and S. Lee, "Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison With Frequency Ratio and Bivariate Logistic Regression Modelling", Environ. Model. Softw., 25(6), 747- 759 (2010). https://doi.org/10.1016/j.envsoft.2009.10.016
  27. D.J.C. MacKay, "Bayesian Interpolation", Neural Comput., 4(3), 415-447 (1992). https://doi.org/10.1162/neco.1992.4.3.415
  28. F.D. Foresee and M.T. Hagan, "Gauss-Newton Approximation to Bayesian Learning", Proc. of Int. Conference on Neural Networks (ICNN'97), 1930-1935, IEEE, Houston (1997).
  29. M. Aakesson, O. Kristensson, L. Boergesson, A. Dueck, and J. Hernelind. THM Modelling of Buffer, Backfill and Other System Components, Critical Processes and Scenarios, Swedish Nuclear Fuel and Waste Management Co. Technical Report, SKB-TR-10-11 (2010).